Skip to main content
Top
Published in: Wood Science and Technology 2/2019

01-03-2019 | Original

Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications

Authors: Diego F. Mora Mendez, Samuel Oluyinka Olaniran, Markus Rüggeberg, Ingo Burgert, Hans J. Herrmann, Falk K. Wittel

Published in: Wood Science and Technology | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modifications alter hygro-mechanical properties of wood in non-trivial ways that depend on modification treatment and wood microstructure. Generic micromechanical models with modifications on the cellular scale of spruce are proposed and studied, such as partial and entire lumen filling with isotropic materials, as well as modification of S2-layer properties. Based on a hierarchical micromechanical model, hygro-mechanical response surfaces of the modified, orthotropic material are predicted. Simulation results are compared to experimental data. The findings can be used for optimizing modification treatments, as well as for calculating the behavior in graded situations, common to treatments with limited modification depth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Astley R, Stol K, Harrington J (1998) Modelling the elastic properties of softwood. Holz Roh Werkst 56(1):43–50CrossRef Astley R, Stol K, Harrington J (1998) Modelling the elastic properties of softwood. Holz Roh Werkst 56(1):43–50CrossRef
go back to reference Cave ID (1978a) Modelling moisture-related mechanical properties of wood part I: properties of the wood constituents. Wood Sci Technol 12:75–86CrossRef Cave ID (1978a) Modelling moisture-related mechanical properties of wood part I: properties of the wood constituents. Wood Sci Technol 12:75–86CrossRef
go back to reference Cave ID (1978b) Modelling moisture-related mechanical properties of wood part II: computation of properties of a model of wood and comparison with experimental data. Wood Sci Technol 12(2):127–139 Cave ID (1978b) Modelling moisture-related mechanical properties of wood part II: computation of properties of a model of wood and comparison with experimental data. Wood Sci Technol 12(2):127–139
go back to reference Chamis CC (1983) Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Quarterly 15(3):1–19 Chamis CC (1983) Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Quarterly 15(3):1–19
go back to reference Cousins W (1976) Elastic modulus of lignin as related to moisture content. Wood Sci Technol 10:9–17CrossRef Cousins W (1976) Elastic modulus of lignin as related to moisture content. Wood Sci Technol 10:9–17CrossRef
go back to reference Cousins W (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12(3):161–167CrossRef Cousins W (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12(3):161–167CrossRef
go back to reference Derome D, Rafsanjani A, Hering S, Dressler M, Patera A, Lanvermann C, Sedighi Gilani M, Wittel F, Niemz P, Carmeliet J (2013) The role of water in the behavior of wood. J Build Phys 36(4):398–421CrossRef Derome D, Rafsanjani A, Hering S, Dressler M, Patera A, Lanvermann C, Sedighi Gilani M, Wittel F, Niemz P, Carmeliet J (2013) The role of water in the behavior of wood. J Build Phys 36(4):398–421CrossRef
go back to reference Dinwoodie JM (2000) Timber: its nature and behaviour, second edn. CRC Press, Boca RatonCrossRef Dinwoodie JM (2000) Timber: its nature and behaviour, second edn. CRC Press, Boca RatonCrossRef
go back to reference Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef
go back to reference Ermeydan MA, Cabane E, Gierlinger N, Koetz J, Burgert I (2014) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv 4:12981–12988CrossRef Ermeydan MA, Cabane E, Gierlinger N, Koetz J, Burgert I (2014) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv 4:12981–12988CrossRef
go back to reference Fengel D (1969) The ultrastructure of cellulose from wood. Wood Sci Technol 3(3):203–217CrossRef Fengel D (1969) The ultrastructure of cellulose from wood. Wood Sci Technol 3(3):203–217CrossRef
go back to reference Fernandes A, Thomas L, Altaner C, Callow P, Forsyth V, Apperley D, Kennedy C, Jarvis M (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108:E1195–E1203CrossRefPubMed Fernandes A, Thomas L, Altaner C, Callow P, Forsyth V, Apperley D, Kennedy C, Jarvis M (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108:E1195–E1203CrossRefPubMed
go back to reference Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352CrossRef Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352CrossRef
go back to reference Hassani MM, Wittel FK, Ammann S, Niemz P, Herrmann HJ (2016) Moisture-induced damage evolution in laminated beech. Wood Sci Technol 50(5):917–940CrossRef Hassani MM, Wittel FK, Ammann S, Niemz P, Herrmann HJ (2016) Moisture-induced damage evolution in laminated beech. Wood Sci Technol 50(5):917–940CrossRef
go back to reference Hill CA (2006) Wood modification: chemical, thermal and other processes. Wiley, New YorkCrossRef Hill CA (2006) Wood modification: chemical, thermal and other processes. Wiley, New YorkCrossRef
go back to reference Hon DNS, Shiraishi N (2000) Wood and cellulosic chemistry, revised, and expanded. CRC Press, Boca Raton Hon DNS, Shiraishi N (2000) Wood and cellulosic chemistry, revised, and expanded. CRC Press, Boca Raton
go back to reference Kahle E, Woodhouse J (1994) The influence of cell geometry on the elasticity of softwood. J Mater Sci 29(5):1250–1259CrossRef Kahle E, Woodhouse J (1994) The influence of cell geometry on the elasticity of softwood. J Mater Sci 29(5):1250–1259CrossRef
go back to reference Keplinger T, Cabane E, Chanana M, Hass P, Merk V, Gierlinger N, Burgert I (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater 11:256–263CrossRefPubMed Keplinger T, Cabane E, Chanana M, Hass P, Merk V, Gierlinger N, Burgert I (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater 11:256–263CrossRefPubMed
go back to reference Kollmann FF, Côté WA (1968) Principles of wood science and technology: part 1 solid wood. Springer, New YorkCrossRef Kollmann FF, Côté WA (1968) Principles of wood science and technology: part 1 solid wood. Springer, New YorkCrossRef
go back to reference Kumar S (2007) Chemical modification of wood. Wood Fiber Sci 26(2):270–280 Kumar S (2007) Chemical modification of wood. Wood Fiber Sci 26(2):270–280
go back to reference Lanvermann C, Evans R, Schmitt U, Hering S, Niemz P (2013) Distribution of structure and lignin within growth rings of norway spruce. Wood Sci Technol 47(3):627–641CrossRef Lanvermann C, Evans R, Schmitt U, Hering S, Niemz P (2013) Distribution of structure and lignin within growth rings of norway spruce. Wood Sci Technol 47(3):627–641CrossRef
go back to reference Neagu RC, Gamstedt EK (2007) Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42(24):10254–10274CrossRef Neagu RC, Gamstedt EK (2007) Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42(24):10254–10274CrossRef
go back to reference Neuhaus H (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Eur J Wood Prod 41(1):21–25CrossRef Neuhaus H (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Eur J Wood Prod 41(1):21–25CrossRef
go back to reference Niemz P, Caduff D (2008) Untersuchungen zur Bestimmung der Poissonschen Konstanten an Fichtenholz. Holz Roh Werkst 66(1):1–4CrossRef Niemz P, Caduff D (2008) Untersuchungen zur Bestimmung der Poissonschen Konstanten an Fichtenholz. Holz Roh Werkst 66(1):1–4CrossRef
go back to reference Niemz P, Sonderegger W (2017) Holzphysik: Physik des Holzes und der Holzwerkstoffe. Carl Hanser Verlag, MunichCrossRef Niemz P, Sonderegger W (2017) Holzphysik: Physik des Holzes und der Holzwerkstoffe. Carl Hanser Verlag, MunichCrossRef
go back to reference Olaniran S, Michen B, Mora Mendez D, Wittel FK, Bachtiar E, Burgert I, Rüggeberg M (2019) Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Sci Technol. https://doi.org/10.1007/s00226-019-01080-5 CrossRef Olaniran S, Michen B, Mora Mendez D, Wittel FK, Bachtiar E, Burgert I, Rüggeberg M (2019) Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Sci Technol. https://​doi.​org/​10.​1007/​s00226-019-01080-5 CrossRef
go back to reference Perré P, Huber F (2007) Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for douglas fir (Pseudotsuga menziesii) and spruce (picea abies). Ann For Sci 64(3):255–265CrossRef Perré P, Huber F (2007) Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for douglas fir (Pseudotsuga menziesii) and spruce (picea abies). Ann For Sci 64(3):255–265CrossRef
go back to reference Persson K (2000) Micromechanical modelling of wood and fibre properties. Dissertation, Lund University Persson K (2000) Micromechanical modelling of wood and fibre properties. Dissertation, Lund University
go back to reference Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3d micromechanical modeling. Comput Mater Sci 46(2):310–320CrossRef Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3d micromechanical modeling. Comput Mater Sci 46(2):310–320CrossRef
go back to reference Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267CrossRef Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267CrossRef
go back to reference Rafsanjani A, Derome D, Wittel FK, Carmeliet J (2012) Computational up-scaling of anisotropic swelling and mechnical behavior of hierarchical cellular materials. Compos Sci Technol 72(6):744–751CrossRef Rafsanjani A, Derome D, Wittel FK, Carmeliet J (2012) Computational up-scaling of anisotropic swelling and mechnical behavior of hierarchical cellular materials. Compos Sci Technol 72(6):744–751CrossRef
go back to reference Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca RatonCrossRef Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca RatonCrossRef
go back to reference Saavedra Flores EI, Haldar S (2016) Micro-macro mechanical relations in Palmetto wood by numerical homogenisation. Comput Struct 154:1–10CrossRef Saavedra Flores EI, Haldar S (2016) Micro-macro mechanical relations in Palmetto wood by numerical homogenisation. Comput Struct 154:1–10CrossRef
go back to reference Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129CrossRef Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129CrossRef
go back to reference Simulia (2014) ABAQUS Documentation v. 6.14. Dassault Systems Simulia (2014) ABAQUS Documentation v. 6.14. Dassault Systems
go back to reference Wallström L, Lindberg H, Johansson I (1995) Wood surface stabilization. Holz Roh Werkst 53(2):87–92CrossRef Wallström L, Lindberg H, Johansson I (1995) Wood surface stabilization. Holz Roh Werkst 53(2):87–92CrossRef
go back to reference Wypych G (2012) PS polystyrene. In: Wypych G (ed) Handbook of polymers. Elsevier, Oxford, pp 541–547CrossRef Wypych G (2012) PS polystyrene. In: Wypych G (ed) Handbook of polymers. Elsevier, Oxford, pp 541–547CrossRef
Metadata
Title
Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications
Authors
Diego F. Mora Mendez
Samuel Oluyinka Olaniran
Markus Rüggeberg
Ingo Burgert
Hans J. Herrmann
Falk K. Wittel
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Wood Science and Technology / Issue 2/2019
Print ISSN: 0043-7719
Electronic ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-019-01082-3

Other articles of this Issue 2/2019

Wood Science and Technology 2/2019 Go to the issue