Skip to main content
Top
Published in: Applied Composite Materials 4/2020

25-07-2020

Mechanical Properties of α-SiC and Correlation to SiC/Si Interface at Nanoscale from Reaction Bonded SiC/Si Composites (RBSC)

Authors: Chun-yen Hsu, Yuying Zhang, Prashant Karandikar, Fei Deng, Chaoying Ni

Published in: Applied Composite Materials | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reaction bonded SiC/Si (RBSC) composites composed of α-SiC, β-SiC and crystalline-Si phases manufactured at high temperature are widely used in different applications due to their outstanding performances in extreme service conditions. Although the macroscopic mechanical properties of these materials have been extensively explored, there are questions remaining unanswered such as the local material behavior compared to the SiC/Si interface, mechanistic responses in nanoscale and the micro- to nanoscale mechanical properties of major individual components after experiencing the reaction bonding process. In this study, nanoscale specimens were prepared by utilizing Ga focused ion beam (FIB) and an in-situ tensile testing platform was established with a testing stage accommodated inside a field emission scanning electron microscope (FE-SEM). Maximum tensile strength, elastic modulus and Weibull modulus of the nanoscale α-SiC specimens were measured to be 22.9 GPa, 321 GPa and 4.1, respectively. The maximum failure strength was found to be as high as 80% of the theoretical fracture strength. The fracture was found to originate at the side of the specimen surface and appeared to propagate in a brittle manner. The overlap of tensile strength ranges of α-SiC and SiC/Si interface suggests the consistency with an observation of mixed fracture modes in RBSC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Singh, M., Behrendt, D.R.: Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics. Mater. Sci. Eng. A. 187, 183–187 (1994)CrossRef Singh, M., Behrendt, D.R.: Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics. Mater. Sci. Eng. A. 187, 183–187 (1994)CrossRef
2.
go back to reference P.G. Karandikar, G. Evans, S. Wong, and M.K. Aghajanian, “A review of ceramics for armor applications;” pp. 163–175 in Adv. Ceram. Armor IV Ceram. Eng. Sci. Proc. 2009 P.G. Karandikar, G. Evans, S. Wong, and M.K. Aghajanian, “A review of ceramics for armor applications;” pp. 163–175 in Adv. Ceram. Armor IV Ceram. Eng. Sci. Proc. 2009
3.
go back to reference A. Marshall, P. Karandikar, A. McCormick, and M. Aghajanian, “effect of SiC content and third phase metal additions on thermal and mechanical properties of Si/SiC ceramics;” p. 117 in Eng. Ceram. Compos. IV. The American Ceramic Society, 2010 A. Marshall, P. Karandikar, A. McCormick, and M. Aghajanian, “effect of SiC content and third phase metal additions on thermal and mechanical properties of Si/SiC ceramics;” p. 117 in Eng. Ceram. Compos. IV. The American Ceramic Society, 2010
4.
go back to reference P. Karandikar, M. Aghajanian, D. Agrawal, and J. Cheng, “Chapter 42. Microwave Assisted (Mass) Processing of Metal-Ceramic and Reaction-Bonded Composites;” pp. 435–446 in Mech. Prop. Perform. Eng. Ceram. II Ceram. Eng. Sci. Proc. Edited by R. Tandon, A. Wereszczak and E. Lara-Curzio. John Wiley & Sons, Inc., 207AD P. Karandikar, M. Aghajanian, D. Agrawal, and J. Cheng, “Chapter 42. Microwave Assisted (Mass) Processing of Metal-Ceramic and Reaction-Bonded Composites;” pp. 435–446 in Mech. Prop. Perform. Eng. Ceram. II Ceram. Eng. Sci. Proc. Edited by R. Tandon, A. Wereszczak and E. Lara-Curzio. John Wiley & Sons, Inc., 207AD
5.
go back to reference Zhang, Y., Hsu, C.-Y., Aubuchon, S., Karandikar, P., Ni, C.: Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC). J. Alloys Compd. 764, 107–111 (2018)CrossRef Zhang, Y., Hsu, C.-Y., Aubuchon, S., Karandikar, P., Ni, C.: Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC). J. Alloys Compd. 764, 107–111 (2018)CrossRef
6.
go back to reference M. Aghajanian, C. Emmons, S. Rummel, P. Barber, C. Robb, D. Hibbard, M.C. Technologies, and T.I. Park, “Effect of grain size on microstructure , properties and surface roughness of reaction bonded SiC ceramics,” Soc. Photo-Optical Instrum. Eng., 8837 (2013) M. Aghajanian, C. Emmons, S. Rummel, P. Barber, C. Robb, D. Hibbard, M.C. Technologies, and T.I. Park, “Effect of grain size on microstructure , properties and surface roughness of reaction bonded SiC ceramics,” Soc. Photo-Optical Instrum. Eng., 8837 (2013)
7.
go back to reference Munoz, A., Martinez-Fernandez, J., Dominguez-Rodriguez, A., Singh, M.: High-temperature compressive strength of reaction-formed silicon carbide (RFSC) ceramics. J. Eur. Ceram. Soc. 18, 65–68 (1998)CrossRef Munoz, A., Martinez-Fernandez, J., Dominguez-Rodriguez, A., Singh, M.: High-temperature compressive strength of reaction-formed silicon carbide (RFSC) ceramics. J. Eur. Ceram. Soc. 18, 65–68 (1998)CrossRef
8.
go back to reference Tressler, R., Messing, G., Pantano, G., Newnham, R.: Tailoring Multiphase and Composite Ceramics. Plenum Press, New York (2012) Tressler, R., Messing, G., Pantano, G., Newnham, R.: Tailoring Multiphase and Composite Ceramics. Plenum Press, New York (2012)
9.
go back to reference Hsu, C., Zhang, Y., Xie, Y., Deng, F., Karandikar, P., Xiao, J.Q., Ni, C.: In-situ measurement of SiC/Si interfacial tensile strength of reaction bonded SiC/Si composite. Compos. Part B Eng. 175, 107116 (2019)CrossRef Hsu, C., Zhang, Y., Xie, Y., Deng, F., Karandikar, P., Xiao, J.Q., Ni, C.: In-situ measurement of SiC/Si interfacial tensile strength of reaction bonded SiC/Si composite. Compos. Part B Eng. 175, 107116 (2019)CrossRef
10.
go back to reference X. Luo, S. Goel, and R.L. Reuben, “A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide,” J. Eur. Ceram. Soc., (2012), X. Luo, S. Goel, and R.L. Reuben, “A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide,” J. Eur. Ceram. Soc., (2012),
11.
go back to reference W.N. Sharpe, O. Jadaan, G.M. Beheim, G.D. Quinn, and N.N. Nemeth, “Fracture Strength of Silicon Carbide Microspecimens,” J. Microelectromechanical Syst., (2005). W.N. Sharpe, O. Jadaan, G.M. Beheim, G.D. Quinn, and N.N. Nemeth, “Fracture Strength of Silicon Carbide Microspecimens,” J. Microelectromechanical Syst., (2005).
12.
go back to reference W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, and O.M. Jadaan, “Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C,” J. Microelectromechanical Syst., (2008) W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, and O.M. Jadaan, “Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C,” J. Microelectromechanical Syst., (2008)
13.
go back to reference J.J. Petrovic, J. V. Milewski, D.L. Rohr, and F.D. Gac, “Tensile Mechanical Properties of SiC Whiskers,” J. Mater. Sci., (1985). J.J. Petrovic, J. V. Milewski, D.L. Rohr, and F.D. Gac, “Tensile Mechanical Properties of SiC Whiskers,” J. Mater. Sci., (1985).
14.
go back to reference G. Cheng, T.H. Chang, Q. Qin, H. Huang, and Y. Zhu, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density,” Nano Lett., (2014). G. Cheng, T.H. Chang, Q. Qin, H. Huang, and Y. Zhu, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density,” Nano Lett., (2014).
15.
go back to reference Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. (1951) Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. (1951)
16.
go back to reference C. Lu, R. Danzer, and F.D. Fischer, “Influence of Threshold Stress on the Estimation of the Weibull Statistics,” J. Am. Ceram. Soc., (2002). C. Lu, R. Danzer, and F.D. Fischer, “Influence of Threshold Stress on the Estimation of the Weibull Statistics,” J. Am. Ceram. Soc., (2002).
17.
go back to reference R. Danzer, P. Supancic, J. Pascual, and T. Lube, “Fracture Statistics of Ceramics - Weibull Statistics and Deviations from Weibull Statistics,” Eng. Fract. Mech., (2007). R. Danzer, P. Supancic, J. Pascual, and T. Lube, “Fracture Statistics of Ceramics - Weibull Statistics and Deviations from Weibull Statistics,” Eng. Fract. Mech., (2007).
18.
go back to reference Liu, D., Flewitt, P.E.J.: Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing. Carbon N. Y. 114, 261–274 (2017)CrossRef Liu, D., Flewitt, P.E.J.: Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing. Carbon N. Y. 114, 261–274 (2017)CrossRef
19.
go back to reference J.R. Greer and W.D. Nix, “Nanoscale Gold Pillars Strengthened through Dislocation Starvation,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006). J.R. Greer and W.D. Nix, “Nanoscale Gold Pillars Strengthened through Dislocation Starvation,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006).
20.
go back to reference Kiuchi, M., Matsui, S., Isono, Y.: Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated Nano Tensile testing device. J. Microelectromechanical Syst.16(2), 191–201 (2007)CrossRef Kiuchi, M., Matsui, S., Isono, Y.: Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated Nano Tensile testing device. J. Microelectromechanical Syst.16(2), 191–201 (2007)CrossRef
21.
go back to reference Ina, G., Fujii, T., Kozeki, T., Miura, E., Inoue, S., Namazu, T.: Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires. Jpn. J. Appl. Phys.56(6S1), 06GN17 (2017)CrossRef Ina, G., Fujii, T., Kozeki, T., Miura, E., Inoue, S., Namazu, T.: Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires. Jpn. J. Appl. Phys.56(6S1), 06GN17 (2017)CrossRef
22.
go back to reference Fujii, K., Fukuya, K.: Development of Micro Tensile Testing Method in an FIB System for Evaluating Grain Boundary Strength. Mater. Trans.52(1), 20–24 (2011)CrossRef Fujii, K., Fukuya, K.: Development of Micro Tensile Testing Method in an FIB System for Evaluating Grain Boundary Strength. Mater. Trans.52(1), 20–24 (2011)CrossRef
23.
go back to reference Marshall, A., Chhillar, P., Karandikar, P., McCormick, A., Aghajanian, M.: The Effects of Si Content and SiC Polytype on the Microstructure and Properties of RBSC. Mech. Prop. Process. Ceram. Bin. Ternary, Compos. Syst. Ceram. Eng. Sci. Proc.29(2), 115–126 (2009) Marshall, A., Chhillar, P., Karandikar, P., McCormick, A., Aghajanian, M.: The Effects of Si Content and SiC Polytype on the Microstructure and Properties of RBSC. Mech. Prop. Process. Ceram. Bin. Ternary, Compos. Syst. Ceram. Eng. Sci. Proc.29(2), 115–126 (2009)
24.
go back to reference S. Salamone, P. Karandikar, A. Marshall, D. Marchant, and M. Sennett, “Effects of Si:SiC Ratio and SiC Grain Size on Properties of RBSC;” pp. 101–109 in Mech. Prop. Perform. Eng. Ceram. Compos. III. Edited by E. Lara-Curzio, J. Salem and D. Zhu. John Wiley & Sons, Inc., 2008 S. Salamone, P. Karandikar, A. Marshall, D. Marchant, and M. Sennett, “Effects of Si:SiC Ratio and SiC Grain Size on Properties of RBSC;” pp. 101–109 in Mech. Prop. Perform. Eng. Ceram. Compos. III. Edited by E. Lara-Curzio, J. Salem and D. Zhu. John Wiley & Sons, Inc., 2008
25.
go back to reference P.G. Karandikar, M. Aghajanian, and B. Morgan, “Complex, net-shape ceramic composite components for structural, lithography, mirror and armor applications;” pp. 561–566 in 27th Int. Cocoa Beach Conf. Adv. Ceram. Compost. B. 2003 P.G. Karandikar, M. Aghajanian, and B. Morgan, “Complex, net-shape ceramic composite components for structural, lithography, mirror and armor applications;” pp. 561–566 in 27th Int. Cocoa Beach Conf. Adv. Ceram. Compost. B. 2003
26.
go back to reference S. Nakashima, M. Higashihira, K. Maeda, and H. Tanaka, “Raman Scattering Characterization of Polytype in Silicon Carbide Ceramics: Comparison with X-Ray Diffraction,” J. Am. Ceram. Soc., (2003) S. Nakashima, M. Higashihira, K. Maeda, and H. Tanaka, “Raman Scattering Characterization of Polytype in Silicon Carbide Ceramics: Comparison with X-Ray Diffraction,” J. Am. Ceram. Soc., (2003)
27.
go back to reference H. Okumura, E. Sakuma, J.H. Lee, H. Mukaida, S. Misawa, K. Endo, and S. Yoshida, “Raman Scattering of SiC: Application to the Identification of Heteroepitaxy of SiC Polytypes,” J. Appl. Phys., (1987) H. Okumura, E. Sakuma, J.H. Lee, H. Mukaida, S. Misawa, K. Endo, and S. Yoshida, “Raman Scattering of SiC: Application to the Identification of Heteroepitaxy of SiC Polytypes,” J. Appl. Phys., (1987)
28.
go back to reference J.H. Parker Jr., D.W. Feldman, and M. Ashkin, “Raman Scattering by Silicon and Germanium,” Phys. Rev., (1967). J.H. Parker Jr., D.W. Feldman, and M. Ashkin, “Raman Scattering by Silicon and Germanium,” Phys. Rev., (1967).
29.
go back to reference Ness, J.N., Page, T.F.: Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 21, 1377–1397 (1986)CrossRef Ness, J.N., Page, T.F.: Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 21, 1377–1397 (1986)CrossRef
30.
go back to reference H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, et al., “Elasticity, Strength, and Toughness of Single Crystal Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon,” Appl. Phys. Lett., (2006). H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, et al., “Elasticity, Strength, and Toughness of Single Crystal Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon,” Appl. Phys. Lett., (2006).
31.
go back to reference Levitt, A.: Whisker Technology. Wiley, New York (1970) Levitt, A.: Whisker Technology. Wiley, New York (1970)
32.
go back to reference J. Wang, C. Lu, Q. Wang, P. Xiao, F. Ke, Y. Bai, Y. Shen, X. Liao, et al., “Influence of Microstructures on Mechanical Behaviours of SiC Nanowires: a Molecular Dynamics Study,” Nanotechnology, (2012). J. Wang, C. Lu, Q. Wang, P. Xiao, F. Ke, Y. Bai, Y. Shen, X. Liao, et al., “Influence of Microstructures on Mechanical Behaviours of SiC Nanowires: a Molecular Dynamics Study,” Nanotechnology, (2012).
33.
go back to reference Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, and W. Lu, “Mechanical Properties of Vapor−Liquid−Solid Synthesized Silicon Nanowires,” Nano Lett., (2009). Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, and W. Lu, “Mechanical Properties of Vapor−Liquid−Solid Synthesized Silicon Nanowires,” Nano Lett., (2009).
34.
go back to reference Y. He, L. Zhong, F. Fan, C. Wang, T. Zhu, and S.X. Mao, “In Situ Observation of Shear-Driven Amorphization in Silicon Crystals,” Nat. Nanotechnol., (2016). Y. He, L. Zhong, F. Fan, C. Wang, T. Zhu, and S.X. Mao, “In Situ Observation of Shear-Driven Amorphization in Silicon Crystals,” Nat. Nanotechnol., (2016).
35.
go back to reference T. Ohji, Y. Yamauchi, W. Kanematsu, and S. Ito, “Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide,” J. Am. Ceram. Soc., (1989). T. Ohji, Y. Yamauchi, W. Kanematsu, and S. Ito, “Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide,” J. Am. Ceram. Soc., (1989).
36.
go back to reference C. Lu, R. Danzer, and F.D. Fischer, “Fracture statistics of brittle materials: Weibull or normal distribution,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., (2002) C. Lu, R. Danzer, and F.D. Fischer, “Fracture statistics of brittle materials: Weibull or normal distribution,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., (2002)
37.
go back to reference M.A. Makeev, D. Srivastava, and M. Menon, “Silicon Carbide Nanowires under External Loads: an Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006) M.A. Makeev, D. Srivastava, and M. Menon, “Silicon Carbide Nanowires under External Loads: an Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006)
38.
go back to reference Wang, Z., Zu, X., Gao, F., Weber, W.J.: Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys. Rev. B. 77(22), 224113 (2008)CrossRef Wang, Z., Zu, X., Gao, F., Weber, W.J.: Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys. Rev. B. 77(22), 224113 (2008)CrossRef
39.
go back to reference Hasselman, D.P.H., Batha, H.D.: STRENGTH OF SINGLE CRYSTAL SILICON CARBIDE. Appl. Phys. Lett.2(6), 111–113 (1963)CrossRef Hasselman, D.P.H., Batha, H.D.: STRENGTH OF SINGLE CRYSTAL SILICON CARBIDE. Appl. Phys. Lett.2(6), 111–113 (1963)CrossRef
40.
go back to reference E.W. Wong, P.E. Sheehan, and C.M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science (80-.), (1997) E.W. Wong, P.E. Sheehan, and C.M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science (80-.), (1997)
Metadata
Title
Mechanical Properties of α-SiC and Correlation to SiC/Si Interface at Nanoscale from Reaction Bonded SiC/Si Composites (RBSC)
Authors
Chun-yen Hsu
Yuying Zhang
Prashant Karandikar
Fei Deng
Chaoying Ni
Publication date
25-07-2020
Publisher
Springer Netherlands
Published in
Applied Composite Materials / Issue 4/2020
Print ISSN: 0929-189X
Electronic ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-020-09825-3

Other articles of this Issue 4/2020

Applied Composite Materials 4/2020 Go to the issue

Premium Partners