Skip to main content
Erschienen in: Applied Composite Materials 4/2020

25.07.2020

Mechanical Properties of α-SiC and Correlation to SiC/Si Interface at Nanoscale from Reaction Bonded SiC/Si Composites (RBSC)

verfasst von: Chun-yen Hsu, Yuying Zhang, Prashant Karandikar, Fei Deng, Chaoying Ni

Erschienen in: Applied Composite Materials | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reaction bonded SiC/Si (RBSC) composites composed of α-SiC, β-SiC and crystalline-Si phases manufactured at high temperature are widely used in different applications due to their outstanding performances in extreme service conditions. Although the macroscopic mechanical properties of these materials have been extensively explored, there are questions remaining unanswered such as the local material behavior compared to the SiC/Si interface, mechanistic responses in nanoscale and the micro- to nanoscale mechanical properties of major individual components after experiencing the reaction bonding process. In this study, nanoscale specimens were prepared by utilizing Ga focused ion beam (FIB) and an in-situ tensile testing platform was established with a testing stage accommodated inside a field emission scanning electron microscope (FE-SEM). Maximum tensile strength, elastic modulus and Weibull modulus of the nanoscale α-SiC specimens were measured to be 22.9 GPa, 321 GPa and 4.1, respectively. The maximum failure strength was found to be as high as 80% of the theoretical fracture strength. The fracture was found to originate at the side of the specimen surface and appeared to propagate in a brittle manner. The overlap of tensile strength ranges of α-SiC and SiC/Si interface suggests the consistency with an observation of mixed fracture modes in RBSC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Singh, M., Behrendt, D.R.: Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics. Mater. Sci. Eng. A. 187, 183–187 (1994)CrossRef Singh, M., Behrendt, D.R.: Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics. Mater. Sci. Eng. A. 187, 183–187 (1994)CrossRef
2.
Zurück zum Zitat P.G. Karandikar, G. Evans, S. Wong, and M.K. Aghajanian, “A review of ceramics for armor applications;” pp. 163–175 in Adv. Ceram. Armor IV Ceram. Eng. Sci. Proc. 2009 P.G. Karandikar, G. Evans, S. Wong, and M.K. Aghajanian, “A review of ceramics for armor applications;” pp. 163–175 in Adv. Ceram. Armor IV Ceram. Eng. Sci. Proc. 2009
3.
Zurück zum Zitat A. Marshall, P. Karandikar, A. McCormick, and M. Aghajanian, “effect of SiC content and third phase metal additions on thermal and mechanical properties of Si/SiC ceramics;” p. 117 in Eng. Ceram. Compos. IV. The American Ceramic Society, 2010 A. Marshall, P. Karandikar, A. McCormick, and M. Aghajanian, “effect of SiC content and third phase metal additions on thermal and mechanical properties of Si/SiC ceramics;” p. 117 in Eng. Ceram. Compos. IV. The American Ceramic Society, 2010
4.
Zurück zum Zitat P. Karandikar, M. Aghajanian, D. Agrawal, and J. Cheng, “Chapter 42. Microwave Assisted (Mass) Processing of Metal-Ceramic and Reaction-Bonded Composites;” pp. 435–446 in Mech. Prop. Perform. Eng. Ceram. II Ceram. Eng. Sci. Proc. Edited by R. Tandon, A. Wereszczak and E. Lara-Curzio. John Wiley & Sons, Inc., 207AD P. Karandikar, M. Aghajanian, D. Agrawal, and J. Cheng, “Chapter 42. Microwave Assisted (Mass) Processing of Metal-Ceramic and Reaction-Bonded Composites;” pp. 435–446 in Mech. Prop. Perform. Eng. Ceram. II Ceram. Eng. Sci. Proc. Edited by R. Tandon, A. Wereszczak and E. Lara-Curzio. John Wiley & Sons, Inc., 207AD
5.
Zurück zum Zitat Zhang, Y., Hsu, C.-Y., Aubuchon, S., Karandikar, P., Ni, C.: Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC). J. Alloys Compd. 764, 107–111 (2018)CrossRef Zhang, Y., Hsu, C.-Y., Aubuchon, S., Karandikar, P., Ni, C.: Microstructural and thermal property evolution of reaction bonded silicon carbide (RBSC). J. Alloys Compd. 764, 107–111 (2018)CrossRef
6.
Zurück zum Zitat M. Aghajanian, C. Emmons, S. Rummel, P. Barber, C. Robb, D. Hibbard, M.C. Technologies, and T.I. Park, “Effect of grain size on microstructure , properties and surface roughness of reaction bonded SiC ceramics,” Soc. Photo-Optical Instrum. Eng., 8837 (2013) M. Aghajanian, C. Emmons, S. Rummel, P. Barber, C. Robb, D. Hibbard, M.C. Technologies, and T.I. Park, “Effect of grain size on microstructure , properties and surface roughness of reaction bonded SiC ceramics,” Soc. Photo-Optical Instrum. Eng., 8837 (2013)
7.
Zurück zum Zitat Munoz, A., Martinez-Fernandez, J., Dominguez-Rodriguez, A., Singh, M.: High-temperature compressive strength of reaction-formed silicon carbide (RFSC) ceramics. J. Eur. Ceram. Soc. 18, 65–68 (1998)CrossRef Munoz, A., Martinez-Fernandez, J., Dominguez-Rodriguez, A., Singh, M.: High-temperature compressive strength of reaction-formed silicon carbide (RFSC) ceramics. J. Eur. Ceram. Soc. 18, 65–68 (1998)CrossRef
8.
Zurück zum Zitat Tressler, R., Messing, G., Pantano, G., Newnham, R.: Tailoring Multiphase and Composite Ceramics. Plenum Press, New York (2012) Tressler, R., Messing, G., Pantano, G., Newnham, R.: Tailoring Multiphase and Composite Ceramics. Plenum Press, New York (2012)
9.
Zurück zum Zitat Hsu, C., Zhang, Y., Xie, Y., Deng, F., Karandikar, P., Xiao, J.Q., Ni, C.: In-situ measurement of SiC/Si interfacial tensile strength of reaction bonded SiC/Si composite. Compos. Part B Eng. 175, 107116 (2019)CrossRef Hsu, C., Zhang, Y., Xie, Y., Deng, F., Karandikar, P., Xiao, J.Q., Ni, C.: In-situ measurement of SiC/Si interfacial tensile strength of reaction bonded SiC/Si composite. Compos. Part B Eng. 175, 107116 (2019)CrossRef
10.
Zurück zum Zitat X. Luo, S. Goel, and R.L. Reuben, “A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide,” J. Eur. Ceram. Soc., (2012), X. Luo, S. Goel, and R.L. Reuben, “A Quantitative Assessment of Nanometric Machinability of Major Polytypes of Single Crystal Silicon Carbide,” J. Eur. Ceram. Soc., (2012),
11.
Zurück zum Zitat W.N. Sharpe, O. Jadaan, G.M. Beheim, G.D. Quinn, and N.N. Nemeth, “Fracture Strength of Silicon Carbide Microspecimens,” J. Microelectromechanical Syst., (2005). W.N. Sharpe, O. Jadaan, G.M. Beheim, G.D. Quinn, and N.N. Nemeth, “Fracture Strength of Silicon Carbide Microspecimens,” J. Microelectromechanical Syst., (2005).
12.
Zurück zum Zitat W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, and O.M. Jadaan, “Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C,” J. Microelectromechanical Syst., (2008) W.N. Sharpe, G.M. Beheim, L.J. Evans, N.N. Nemeth, and O.M. Jadaan, “Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at 24 Degrees C and 1000 Degrees C,” J. Microelectromechanical Syst., (2008)
13.
Zurück zum Zitat J.J. Petrovic, J. V. Milewski, D.L. Rohr, and F.D. Gac, “Tensile Mechanical Properties of SiC Whiskers,” J. Mater. Sci., (1985). J.J. Petrovic, J. V. Milewski, D.L. Rohr, and F.D. Gac, “Tensile Mechanical Properties of SiC Whiskers,” J. Mater. Sci., (1985).
14.
Zurück zum Zitat G. Cheng, T.H. Chang, Q. Qin, H. Huang, and Y. Zhu, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density,” Nano Lett., (2014). G. Cheng, T.H. Chang, Q. Qin, H. Huang, and Y. Zhu, “Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density,” Nano Lett., (2014).
15.
Zurück zum Zitat Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. (1951) Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. (1951)
16.
Zurück zum Zitat C. Lu, R. Danzer, and F.D. Fischer, “Influence of Threshold Stress on the Estimation of the Weibull Statistics,” J. Am. Ceram. Soc., (2002). C. Lu, R. Danzer, and F.D. Fischer, “Influence of Threshold Stress on the Estimation of the Weibull Statistics,” J. Am. Ceram. Soc., (2002).
17.
Zurück zum Zitat R. Danzer, P. Supancic, J. Pascual, and T. Lube, “Fracture Statistics of Ceramics - Weibull Statistics and Deviations from Weibull Statistics,” Eng. Fract. Mech., (2007). R. Danzer, P. Supancic, J. Pascual, and T. Lube, “Fracture Statistics of Ceramics - Weibull Statistics and Deviations from Weibull Statistics,” Eng. Fract. Mech., (2007).
18.
Zurück zum Zitat Liu, D., Flewitt, P.E.J.: Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing. Carbon N. Y. 114, 261–274 (2017)CrossRef Liu, D., Flewitt, P.E.J.: Deformation and fracture of carbonaceous materials using in situ micro-mechanical testing. Carbon N. Y. 114, 261–274 (2017)CrossRef
19.
Zurück zum Zitat J.R. Greer and W.D. Nix, “Nanoscale Gold Pillars Strengthened through Dislocation Starvation,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006). J.R. Greer and W.D. Nix, “Nanoscale Gold Pillars Strengthened through Dislocation Starvation,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006).
20.
Zurück zum Zitat Kiuchi, M., Matsui, S., Isono, Y.: Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated Nano Tensile testing device. J. Microelectromechanical Syst.16(2), 191–201 (2007)CrossRef Kiuchi, M., Matsui, S., Isono, Y.: Mechanical characteristics of FIB deposited carbon nanowires using an electrostatic actuated Nano Tensile testing device. J. Microelectromechanical Syst.16(2), 191–201 (2007)CrossRef
21.
Zurück zum Zitat Ina, G., Fujii, T., Kozeki, T., Miura, E., Inoue, S., Namazu, T.: Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires. Jpn. J. Appl. Phys.56(6S1), 06GN17 (2017)CrossRef Ina, G., Fujii, T., Kozeki, T., Miura, E., Inoue, S., Namazu, T.: Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires. Jpn. J. Appl. Phys.56(6S1), 06GN17 (2017)CrossRef
22.
Zurück zum Zitat Fujii, K., Fukuya, K.: Development of Micro Tensile Testing Method in an FIB System for Evaluating Grain Boundary Strength. Mater. Trans.52(1), 20–24 (2011)CrossRef Fujii, K., Fukuya, K.: Development of Micro Tensile Testing Method in an FIB System for Evaluating Grain Boundary Strength. Mater. Trans.52(1), 20–24 (2011)CrossRef
23.
Zurück zum Zitat Marshall, A., Chhillar, P., Karandikar, P., McCormick, A., Aghajanian, M.: The Effects of Si Content and SiC Polytype on the Microstructure and Properties of RBSC. Mech. Prop. Process. Ceram. Bin. Ternary, Compos. Syst. Ceram. Eng. Sci. Proc.29(2), 115–126 (2009) Marshall, A., Chhillar, P., Karandikar, P., McCormick, A., Aghajanian, M.: The Effects of Si Content and SiC Polytype on the Microstructure and Properties of RBSC. Mech. Prop. Process. Ceram. Bin. Ternary, Compos. Syst. Ceram. Eng. Sci. Proc.29(2), 115–126 (2009)
24.
Zurück zum Zitat S. Salamone, P. Karandikar, A. Marshall, D. Marchant, and M. Sennett, “Effects of Si:SiC Ratio and SiC Grain Size on Properties of RBSC;” pp. 101–109 in Mech. Prop. Perform. Eng. Ceram. Compos. III. Edited by E. Lara-Curzio, J. Salem and D. Zhu. John Wiley & Sons, Inc., 2008 S. Salamone, P. Karandikar, A. Marshall, D. Marchant, and M. Sennett, “Effects of Si:SiC Ratio and SiC Grain Size on Properties of RBSC;” pp. 101–109 in Mech. Prop. Perform. Eng. Ceram. Compos. III. Edited by E. Lara-Curzio, J. Salem and D. Zhu. John Wiley & Sons, Inc., 2008
25.
Zurück zum Zitat P.G. Karandikar, M. Aghajanian, and B. Morgan, “Complex, net-shape ceramic composite components for structural, lithography, mirror and armor applications;” pp. 561–566 in 27th Int. Cocoa Beach Conf. Adv. Ceram. Compost. B. 2003 P.G. Karandikar, M. Aghajanian, and B. Morgan, “Complex, net-shape ceramic composite components for structural, lithography, mirror and armor applications;” pp. 561–566 in 27th Int. Cocoa Beach Conf. Adv. Ceram. Compost. B. 2003
26.
Zurück zum Zitat S. Nakashima, M. Higashihira, K. Maeda, and H. Tanaka, “Raman Scattering Characterization of Polytype in Silicon Carbide Ceramics: Comparison with X-Ray Diffraction,” J. Am. Ceram. Soc., (2003) S. Nakashima, M. Higashihira, K. Maeda, and H. Tanaka, “Raman Scattering Characterization of Polytype in Silicon Carbide Ceramics: Comparison with X-Ray Diffraction,” J. Am. Ceram. Soc., (2003)
27.
Zurück zum Zitat H. Okumura, E. Sakuma, J.H. Lee, H. Mukaida, S. Misawa, K. Endo, and S. Yoshida, “Raman Scattering of SiC: Application to the Identification of Heteroepitaxy of SiC Polytypes,” J. Appl. Phys., (1987) H. Okumura, E. Sakuma, J.H. Lee, H. Mukaida, S. Misawa, K. Endo, and S. Yoshida, “Raman Scattering of SiC: Application to the Identification of Heteroepitaxy of SiC Polytypes,” J. Appl. Phys., (1987)
28.
Zurück zum Zitat J.H. Parker Jr., D.W. Feldman, and M. Ashkin, “Raman Scattering by Silicon and Germanium,” Phys. Rev., (1967). J.H. Parker Jr., D.W. Feldman, and M. Ashkin, “Raman Scattering by Silicon and Germanium,” Phys. Rev., (1967).
29.
Zurück zum Zitat Ness, J.N., Page, T.F.: Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 21, 1377–1397 (1986)CrossRef Ness, J.N., Page, T.F.: Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 21, 1377–1397 (1986)CrossRef
30.
Zurück zum Zitat H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, et al., “Elasticity, Strength, and Toughness of Single Crystal Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon,” Appl. Phys. Lett., (2006). H.D. Espinosa, B. Peng, N. Moldovan, T.A. Friedmann, X. Xiao, D.C. Mancini, O. Auciello, J. Carlisle, et al., “Elasticity, Strength, and Toughness of Single Crystal Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon,” Appl. Phys. Lett., (2006).
31.
Zurück zum Zitat Levitt, A.: Whisker Technology. Wiley, New York (1970) Levitt, A.: Whisker Technology. Wiley, New York (1970)
32.
Zurück zum Zitat J. Wang, C. Lu, Q. Wang, P. Xiao, F. Ke, Y. Bai, Y. Shen, X. Liao, et al., “Influence of Microstructures on Mechanical Behaviours of SiC Nanowires: a Molecular Dynamics Study,” Nanotechnology, (2012). J. Wang, C. Lu, Q. Wang, P. Xiao, F. Ke, Y. Bai, Y. Shen, X. Liao, et al., “Influence of Microstructures on Mechanical Behaviours of SiC Nanowires: a Molecular Dynamics Study,” Nanotechnology, (2012).
33.
Zurück zum Zitat Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, and W. Lu, “Mechanical Properties of Vapor−Liquid−Solid Synthesized Silicon Nanowires,” Nano Lett., (2009). Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, and W. Lu, “Mechanical Properties of Vapor−Liquid−Solid Synthesized Silicon Nanowires,” Nano Lett., (2009).
34.
Zurück zum Zitat Y. He, L. Zhong, F. Fan, C. Wang, T. Zhu, and S.X. Mao, “In Situ Observation of Shear-Driven Amorphization in Silicon Crystals,” Nat. Nanotechnol., (2016). Y. He, L. Zhong, F. Fan, C. Wang, T. Zhu, and S.X. Mao, “In Situ Observation of Shear-Driven Amorphization in Silicon Crystals,” Nat. Nanotechnol., (2016).
35.
Zurück zum Zitat T. Ohji, Y. Yamauchi, W. Kanematsu, and S. Ito, “Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide,” J. Am. Ceram. Soc., (1989). T. Ohji, Y. Yamauchi, W. Kanematsu, and S. Ito, “Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide,” J. Am. Ceram. Soc., (1989).
36.
Zurück zum Zitat C. Lu, R. Danzer, and F.D. Fischer, “Fracture statistics of brittle materials: Weibull or normal distribution,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., (2002) C. Lu, R. Danzer, and F.D. Fischer, “Fracture statistics of brittle materials: Weibull or normal distribution,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., (2002)
37.
Zurück zum Zitat M.A. Makeev, D. Srivastava, and M. Menon, “Silicon Carbide Nanowires under External Loads: an Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006) M.A. Makeev, D. Srivastava, and M. Menon, “Silicon Carbide Nanowires under External Loads: an Atomistic Simulation Study,” Phys. Rev. B - Condens. Matter Mater. Phys., (2006)
38.
Zurück zum Zitat Wang, Z., Zu, X., Gao, F., Weber, W.J.: Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys. Rev. B. 77(22), 224113 (2008)CrossRef Wang, Z., Zu, X., Gao, F., Weber, W.J.: Atomistic simulations of the mechanical properties of silicon carbide nanowires. Phys. Rev. B. 77(22), 224113 (2008)CrossRef
39.
Zurück zum Zitat Hasselman, D.P.H., Batha, H.D.: STRENGTH OF SINGLE CRYSTAL SILICON CARBIDE. Appl. Phys. Lett.2(6), 111–113 (1963)CrossRef Hasselman, D.P.H., Batha, H.D.: STRENGTH OF SINGLE CRYSTAL SILICON CARBIDE. Appl. Phys. Lett.2(6), 111–113 (1963)CrossRef
40.
Zurück zum Zitat E.W. Wong, P.E. Sheehan, and C.M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science (80-.), (1997) E.W. Wong, P.E. Sheehan, and C.M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science (80-.), (1997)
Metadaten
Titel
Mechanical Properties of α-SiC and Correlation to SiC/Si Interface at Nanoscale from Reaction Bonded SiC/Si Composites (RBSC)
verfasst von
Chun-yen Hsu
Yuying Zhang
Prashant Karandikar
Fei Deng
Chaoying Ni
Publikationsdatum
25.07.2020
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 4/2020
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-020-09825-3

Weitere Artikel der Ausgabe 4/2020

Applied Composite Materials 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.