Skip to main content
Erschienen in: Applied Composite Materials 4/2020

26.06.2020

Electrical Resistance Curing Method for Hybrid Metal-CFRP Tubes

verfasst von: Marco Povolo, Johnnidel Tabucol, Tommaso M. Brugo, Andrea Zucchelli

Erschienen in: Applied Composite Materials | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hybrid metal-Carbon Fiber Reinforced Polymers (CFRP) core tubes and rollers are becoming progressively important in the automotive, aerospace, and printing industry for the excellent performance/price ratio. The enhanced mechanical properties and favorable tribological performance of these tubes are provided by the coupling of metal with CFRP compared to tubes build from solely CFRP or metal. However, these kinds of tubes are very expensive and only the co-curing technique of metal and CFRP parts guarantees a reduction in production cost and the competitiveness of products. In this work, a simple out-of-autoclave (OOA) electrical resistance co-curing method for hybrid metal-CFRP tubes, based on an analytical model, that exploits the Joule effects, is proposed and verified by experimental test and finite element analysis (FEA). This technique can also be used for other geometries and guarantees considerable energy savings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu, G., Sun, G., Liu, Q., Li, G., Li, Q.: On crushing characteristics of different configurations of metal-composites hybrid tubes. Compos. Struct. 175, 58–69 (2017)CrossRef Zhu, G., Sun, G., Liu, Q., Li, G., Li, Q.: On crushing characteristics of different configurations of metal-composites hybrid tubes. Compos. Struct. 175, 58–69 (2017)CrossRef
2.
Zurück zum Zitat Zhu, G., Zhao, X., Shi, P., Yu, Q.: Crashworthiness analysis and design of metal/cfrp hybrid structures under lateral loading. IEEE Access 7, 64558–64570 (2019)CrossRef Zhu, G., Zhao, X., Shi, P., Yu, Q.: Crashworthiness analysis and design of metal/cfrp hybrid structures under lateral loading. IEEE Access 7, 64558–64570 (2019)CrossRef
3.
Zurück zum Zitat Zhu, G., Sun, G., Yu, H., Li, S., Li, Q.: Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int. J. Mech. Sci. 135, 458–483 (2018)CrossRef Zhu, G., Sun, G., Yu, H., Li, S., Li, Q.: Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int. J. Mech. Sci. 135, 458–483 (2018)CrossRef
4.
Zurück zum Zitat Reuter, C., Tröster, T.: Crashworthiness and numerical simulation of hybrid aluminium-cfrp tubes under axial impact. Thin-Walled Struct. 117, 1–9 (2017)CrossRef Reuter, C., Tröster, T.: Crashworthiness and numerical simulation of hybrid aluminium-cfrp tubes under axial impact. Thin-Walled Struct. 117, 1–9 (2017)CrossRef
5.
Zurück zum Zitat Feng, P., Hu, L., Qian, P., Ye, L.: Buckling behavior of cfrp-aluminum alloy hybrid tubes in axial compression. Eng. Struct. 132, 624–636 (2017)CrossRef Feng, P., Hu, L., Qian, P., Ye, L.: Buckling behavior of cfrp-aluminum alloy hybrid tubes in axial compression. Eng. Struct. 132, 624–636 (2017)CrossRef
6.
Zurück zum Zitat Shi, P., Yu, Q., Huang, R., Zhao, X., Zhu, G.: Crashworthy and performance-cost characteristics of aluminum-cfrp hybrid tubes under quasi-static axial loading. Fibers and Polymers 20(2), 384–397 (2019)CrossRef Shi, P., Yu, Q., Huang, R., Zhao, X., Zhu, G.: Crashworthy and performance-cost characteristics of aluminum-cfrp hybrid tubes under quasi-static axial loading. Fibers and Polymers 20(2), 384–397 (2019)CrossRef
7.
Zurück zum Zitat Sun, G., Wang, Z., Hong, J., Song, K., Li, Q.: Experimental investigation of the quasi-static axial crushing behavior of filament-wound cfrp and aluminum/cfrp hybrid tubes. Compos. Struct. 194, 208–225 (2018)CrossRef Sun, G., Wang, Z., Hong, J., Song, K., Li, Q.: Experimental investigation of the quasi-static axial crushing behavior of filament-wound cfrp and aluminum/cfrp hybrid tubes. Compos. Struct. 194, 208–225 (2018)CrossRef
8.
Zurück zum Zitat Feng, P., Hu, L., Qian, P., Ye, L.: Compressive bearing capacity of cfrp–aluminum alloy hybrid tubes. Compos. Struct. 140, 749–757 (2016)CrossRef Feng, P., Hu, L., Qian, P., Ye, L.: Compressive bearing capacity of cfrp–aluminum alloy hybrid tubes. Compos. Struct. 140, 749–757 (2016)CrossRef
9.
Zurück zum Zitat Sun, G., Yu, H., Wang, Z., Xiao, Z., Li, Q.: Energy absorption mechanics and design optimization of cfrp/aluminium hybrid structures for transverse loading. Int. J. Mech. Sci. 150, 767–783 (2019)CrossRef Sun, G., Yu, H., Wang, Z., Xiao, Z., Li, Q.: Energy absorption mechanics and design optimization of cfrp/aluminium hybrid structures for transverse loading. Int. J. Mech. Sci. 150, 767–783 (2019)CrossRef
10.
Zurück zum Zitat Zhang, J., Lu, B., Zheng, D., Li, Z.: Axial crushing theory of metal-frp hybrid square tubes wrapped with antisymmetric angle-ply. Thin-Walled Struct. 137, 367–376 (2019)CrossRef Zhang, J., Lu, B., Zheng, D., Li, Z.: Axial crushing theory of metal-frp hybrid square tubes wrapped with antisymmetric angle-ply. Thin-Walled Struct. 137, 367–376 (2019)CrossRef
11.
Zurück zum Zitat Choi, J. H., Lee, D. G.: Torque capacity of co-cured tubular lap joints. Journal of composite materials 31(14), 1381–1396 (1997)CrossRef Choi, J. H., Lee, D. G.: Torque capacity of co-cured tubular lap joints. Journal of composite materials 31(14), 1381–1396 (1997)CrossRef
12.
Zurück zum Zitat Chon, C. T.: Analysis of tubular lap joint in torsion. J. Compos. Mater. 16(4), 268–284 (1982)CrossRef Chon, C. T.: Analysis of tubular lap joint in torsion. J. Compos. Mater. 16(4), 268–284 (1982)CrossRef
13.
Zurück zum Zitat Jeon, S. -W., Cho, Y. H., Han, M. -G., Chang, S. -H.: Design of carbon/epoxy–aluminum hybrid upper arm of the pantograph of high-speed trains using adhesive bonding technique. Compos. Struct. 152, 538–545 (2016)CrossRef Jeon, S. -W., Cho, Y. H., Han, M. -G., Chang, S. -H.: Design of carbon/epoxy–aluminum hybrid upper arm of the pantograph of high-speed trains using adhesive bonding technique. Compos. Struct. 152, 538–545 (2016)CrossRef
14.
Zurück zum Zitat Kim, J. K., Lee, D. G., Cho, D. H.: Investigation of adhesively bonded joints for composite propeller shafts. Journal of Composite Materials 35(11), 999–1021 (2001)CrossRef Kim, J. K., Lee, D. G., Cho, D. H.: Investigation of adhesively bonded joints for composite propeller shafts. Journal of Composite Materials 35(11), 999–1021 (2001)CrossRef
15.
Zurück zum Zitat Wang, J., Gao, H., Ding, L., Hao, Y., Wang, B., Sun, T., Liang, Y.: Bond strength between carbon fiber–reinforced plastic tubes and aluminum joints for racing car suspension. Adv Mech Eng 8(10), 1687814016674627 (2016) Wang, J., Gao, H., Ding, L., Hao, Y., Wang, B., Sun, T., Liang, Y.: Bond strength between carbon fiber–reinforced plastic tubes and aluminum joints for racing car suspension. Adv Mech Eng 8(10), 1687814016674627 (2016)
16.
Zurück zum Zitat Cho, D. H., Choi, J. H., et al.: Manufacture of one-piece automotive drive shafts with aluminum and composite materials. Composite Structures 38(1-4), 309–319 (1997)CrossRef Cho, D. H., Choi, J. H., et al.: Manufacture of one-piece automotive drive shafts with aluminum and composite materials. Composite Structures 38(1-4), 309–319 (1997)CrossRef
17.
Zurück zum Zitat Cho, D. H., Lee, D. G.: Manufacturing of co-cured composite aluminum shafts with compression during co-curing operation to reduce residual thermal stresses. Journal of Composite Materials 32(12), 1221–1241 (1998)CrossRef Cho, D. H., Lee, D. G.: Manufacturing of co-cured composite aluminum shafts with compression during co-curing operation to reduce residual thermal stresses. Journal of Composite Materials 32(12), 1221–1241 (1998)CrossRef
18.
Zurück zum Zitat Cho, D. H., Lee, D. G.: Optimum design of co-cured steel–composite tubular single lap joints under axial load. Journal of Adhesion Science and Technology 14(7), 939–963 (2000)CrossRef Cho, D. H., Lee, D. G.: Optimum design of co-cured steel–composite tubular single lap joints under axial load. Journal of Adhesion Science and Technology 14(7), 939–963 (2000)CrossRef
19.
Zurück zum Zitat Kim, H. S., Kim, J. W., Kim, J. K., et al.: Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Composite Structures 63(1), 87–99 (2004)CrossRef Kim, H. S., Kim, J. W., Kim, J. K., et al.: Design and manufacture of an automotive hybrid aluminum/composite drive shaft. Composite Structures 63(1), 87–99 (2004)CrossRef
20.
Zurück zum Zitat Han, M.-G., Cho, Y.H., Jeon, S.-W., Chang, S.-H.: Design and fabrication of a metal-composite hybrid pantograph upper arm by co-cure technique with a friction layer. Compos. Struct. 174, 166–175 (2017)CrossRef Han, M.-G., Cho, Y.H., Jeon, S.-W., Chang, S.-H.: Design and fabrication of a metal-composite hybrid pantograph upper arm by co-cure technique with a friction layer. Compos. Struct. 174, 166–175 (2017)CrossRef
21.
Zurück zum Zitat Povolo, M., Raimondi, L., Brugo, T. M., Pagani, A., Comand, D., Pirazzini, L., Zucchelli, A.: Design and manufacture of hybrid aluminum/composite co-cured tubes with viscoelastic interface layer. Procedia Structural Integrity 12, 196–203 (2018)CrossRef Povolo, M., Raimondi, L., Brugo, T. M., Pagani, A., Comand, D., Pirazzini, L., Zucchelli, A.: Design and manufacture of hybrid aluminum/composite co-cured tubes with viscoelastic interface layer. Procedia Structural Integrity 12, 196–203 (2018)CrossRef
22.
Zurück zum Zitat Joseph, C., Viney, C.: Electrical resistance curing of carbon-fibre/epoxy composites. Compos. Sci. Technol. 60(2), 315–319 (2000)CrossRef Joseph, C., Viney, C.: Electrical resistance curing of carbon-fibre/epoxy composites. Compos. Sci. Technol. 60(2), 315–319 (2000)CrossRef
23.
Zurück zum Zitat Enoki, S., Iwamoto, K., Harada, R., Tanaka, K., Katayama, T.: Heating properties of carbon fibers by using direct resistance heating. WIT Transactions on the Built Environment 124, 239–248 (2012)CrossRef Enoki, S., Iwamoto, K., Harada, R., Tanaka, K., Katayama, T.: Heating properties of carbon fibers by using direct resistance heating. WIT Transactions on the Built Environment 124, 239–248 (2012)CrossRef
24.
Zurück zum Zitat Athanasopoulos, N., Sotiriadis, G., Kostopoulos, V.: A study on the effect of joule-heating during the liquid composite molding (lcm) process and on the curing of cfrp composite laminates. In: Proceedings of 10th international conference on flow processes in composite materials (FPCM10). Paper, no. 32 (2010) Athanasopoulos, N., Sotiriadis, G., Kostopoulos, V.: A study on the effect of joule-heating during the liquid composite molding (lcm) process and on the curing of cfrp composite laminates. In: Proceedings of 10th international conference on flow processes in composite materials (FPCM10). Paper, no. 32 (2010)
25.
Zurück zum Zitat Asanuma, H., Haga, O., Ohira, J., Takemoto, K., Imori, M.: Fabrication of cfrp/al active laminates. JSME International Journal Series A Solid Mechanics and Material Engineering 46(3), 478–483 (2003)CrossRef Asanuma, H., Haga, O., Ohira, J., Takemoto, K., Imori, M.: Fabrication of cfrp/al active laminates. JSME International Journal Series A Solid Mechanics and Material Engineering 46(3), 478–483 (2003)CrossRef
26.
Zurück zum Zitat Mas, B., Fernández-Blázquez, J. P., Duval, J., Bunyan, H., Vilatela, J. J.: Thermoset curing through joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon 63, 523–529 (2013)CrossRef Mas, B., Fernández-Blázquez, J. P., Duval, J., Bunyan, H., Vilatela, J. J.: Thermoset curing through joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon 63, 523–529 (2013)CrossRef
27.
Zurück zum Zitat Nguyen, N., Hao, A., Park, J. G., Liang, R.: In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current. Adv. Eng. Mater. 18(11), 1906–1912 (2016)CrossRef Nguyen, N., Hao, A., Park, J. G., Liang, R.: In situ curing and out-of-autoclave of interply carbon fiber/carbon nanotube buckypaper hybrid composites using electrical current. Adv. Eng. Mater. 18(11), 1906–1912 (2016)CrossRef
28.
Zurück zum Zitat Zhu, L., Pitchumani, R.: Analysis of a process for curing composites by the use of embedded resistive heating elements. Compos. Sci. Technol. 60(14), 2699–2712 (2000)CrossRef Zhu, L., Pitchumani, R.: Analysis of a process for curing composites by the use of embedded resistive heating elements. Compos. Sci. Technol. 60(14), 2699–2712 (2000)CrossRef
29.
Zurück zum Zitat Ramakrishnan, B., Zhu, L., Pitchumani, R.: Curing of composites using internal resistive heating. J Manuf Sci Eng 122(1), 124–131 (2000)CrossRef Ramakrishnan, B., Zhu, L., Pitchumani, R.: Curing of composites using internal resistive heating. J Manuf Sci Eng 122(1), 124–131 (2000)CrossRef
30.
Zurück zum Zitat Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. Journal of Heat Transfer 125 (1), 126–136 (2003)CrossRef Mawardi, A., Pitchumani, R.: Optimal temperature and current cycles for curing of composites using embedded resistive heating elements. Journal of Heat Transfer 125 (1), 126–136 (2003)CrossRef
31.
Zurück zum Zitat Ashrafi, M., Devasia, S., Tuttle, M. E.: Resistive embedded heating for homogeneous curing of adhesively bonded joints. Int. J. Adhes. Adhes. 57, 34–39 (2015)CrossRef Ashrafi, M., Devasia, S., Tuttle, M. E.: Resistive embedded heating for homogeneous curing of adhesively bonded joints. Int. J. Adhes. Adhes. 57, 34–39 (2015)CrossRef
32.
Zurück zum Zitat Povolo, M., Brugo, T. M., Zucchelli, A.: Numerical and experimental investigation of aluminum/cfrp hybrid tubes with rubber-like interlayer. Applied Composite Materials (2020) Povolo, M., Brugo, T. M., Zucchelli, A.: Numerical and experimental investigation of aluminum/cfrp hybrid tubes with rubber-like interlayer. Applied Composite Materials (2020)
33.
Zurück zum Zitat A. R. M. Ansys, help system, Engineering DATA, ANSYS, Inc, 2017 A. R. M. Ansys, help system, Engineering DATA, ANSYS, Inc, 2017
Metadaten
Titel
Electrical Resistance Curing Method for Hybrid Metal-CFRP Tubes
verfasst von
Marco Povolo
Johnnidel Tabucol
Tommaso M. Brugo
Andrea Zucchelli
Publikationsdatum
26.06.2020
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 4/2020
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-020-09818-2

Weitere Artikel der Ausgabe 4/2020

Applied Composite Materials 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.