Skip to main content
Top
Published in: Journal of Materials Science 5/2017

01-03-2017 | Original Paper

Microstructural stability, defect structures and deformation mechanisms in a Ag3Sn/Cu3Sn alloy

Authors: Yu Sun, Haibo Yu, M. Tumerkan Kesim, S. Pamir Alpay, Mark Aindow

Published in: Journal of Materials Science | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ag3Sn and Cu3Sn are important intermetallic compounds formed in lead-free solders and dental amalgams. In this paper, we present a study on the microstructural stability in a Ag1.5Cu1.5Sn alloy using a combination of scanning and transmission electron microscopy experiments. The as-cast microstructure comprises the D0a phases θ-Ag3Sn and ε1-Cu3Sn, plus a small amount of η-Cu6Sn5. There is topotaxial precipitation of Ag3Sn within the Cu3Sn phase, which coarsens with heat treatment at 450 °C. For extended low-temperature aging (1000 h at 100 °C), there is also precipitation of Cu3Sn within the Ag3Sn phase. All the heat-treatments result in the formation of secondary defects in the near-surface region. These defects are dislocations in the Ag3Sn and {011}-type twins in the Cu3Sn. The same defect types are observed in these phases for as-cast samples deformed in compression suggesting that different deformation mechanisms are operating in these isostructural phases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
The notation adopted for the phases corresponds to that defined by Chang et al. [36].
 
2
As noted previously [40], the conventions used to define the axes in the D0a and superstructure polymorphs of Cu3Sn are different. The b axis of the D0a structure is denoted c in the long-period superstructure, and the long-period repeat along the b axis of superstructure is approximately ten times the c 0 parameter for the D0a polymorph.
 
Literature
1.
go back to reference Burkhardt W, Schubert K (1959) Über messingartige Phasen mit A3-verwandter Struktur. Z Metallkde 50:442–452 Burkhardt W, Schubert K (1959) Über messingartige Phasen mit A3-verwandter Struktur. Z Metallkde 50:442–452
2.
go back to reference Brooks PL, Gillam E (1970) The ε-phase in the CuSn system. Acta Metal 18:1181–1185CrossRef Brooks PL, Gillam E (1970) The ε-phase in the CuSn system. Acta Metal 18:1181–1185CrossRef
3.
go back to reference Fairhurst CW, Cohen JB (1972) The crystal structures of two compounds found in dental amalgam: AgHg3 and Ag3Sn. Acta Cryst B 28:371–378CrossRef Fairhurst CW, Cohen JB (1972) The crystal structures of two compounds found in dental amalgam: AgHg3 and Ag3Sn. Acta Cryst B 28:371–378CrossRef
4.
go back to reference Watanabe Y, Fujinaga Y, Iwasaki H (1983) Lattice modulation in the long-period superstructure of Cu3Sn. Acta Cryst B 39:306–311CrossRef Watanabe Y, Fujinaga Y, Iwasaki H (1983) Lattice modulation in the long-period superstructure of Cu3Sn. Acta Cryst B 39:306–311CrossRef
5.
go back to reference Müller CJ, Lidin S (2014) Cu3Sn-understanding the systematic absences. Acta Cryst B 70:879–887CrossRef Müller CJ, Lidin S (2014) Cu3Sn-understanding the systematic absences. Acta Cryst B 70:879–887CrossRef
6.
go back to reference Fürtauer S, Li D, Cupid D, Flandorfer H (2013) The Cu–Sn phase diagram, part I: new experimental results. Intermetallics 34:142–147CrossRef Fürtauer S, Li D, Cupid D, Flandorfer H (2013) The Cu–Sn phase diagram, part I: new experimental results. Intermetallics 34:142–147CrossRef
7.
go back to reference Suganuma K (2001) Advances in lead-free electronics soldering. Curr Opin Solid State Mater Sci 5:55–64CrossRef Suganuma K (2001) Advances in lead-free electronics soldering. Curr Opin Solid State Mater Sci 5:55–64CrossRef
8.
go back to reference Flandorfer H, Saeed U, Luef C, Sabbar A, Ipser H (2007) Interfaces in lead-free solder alloys: enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. Thermochim Acta 459:34–39CrossRef Flandorfer H, Saeed U, Luef C, Sabbar A, Ipser H (2007) Interfaces in lead-free solder alloys: enthalpy of formation of binary Ag–Sn, Cu–Sn and Ni–Sn intermetallic compounds. Thermochim Acta 459:34–39CrossRef
9.
go back to reference Shen J, Chan YC, Liu SY (2008) Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification. Intermetallics 16:1142–1148CrossRef Shen J, Chan YC, Liu SY (2008) Growth mechanism of bulk Ag3Sn intermetallic compounds in Sn–Ag solder during solidification. Intermetallics 16:1142–1148CrossRef
10.
go back to reference Kang SK, Choi WK, Shih DY, Henderson DW, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz KJ (2003) Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu. J Metals 55:61–65 Kang SK, Choi WK, Shih DY, Henderson DW, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz KJ (2003) Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu. J Metals 55:61–65
11.
go back to reference Laurila T, Vuorinen V, Kivilahti JK (2005) Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R 49:1–60CrossRef Laurila T, Vuorinen V, Kivilahti JK (2005) Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R 49:1–60CrossRef
14.
go back to reference Liu B, Tian Y, Feng J, Wang C (2017) Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process. J Mater Sci. doi:10.1007/s10853-016-0483-6 (in press) Liu B, Tian Y, Feng J, Wang C (2017) Enhanced shear strength of Cu–Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process. J Mater Sci. doi:10.​1007/​s10853-016-0483-6 (in press)
15.
go back to reference Kim KS, Huh SH, Suganuma K (2003) Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J Alloy Compd 352:226–236CrossRef Kim KS, Huh SH, Suganuma K (2003) Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J Alloy Compd 352:226–236CrossRef
16.
go back to reference Jeong S, Kim J, Lee H (2004) Effect of cooling rate on growth of the intermetallic compound and fracture mode of near-eutectic Sn–Ag–Cu/Cu pad: before and after aging. J Electron Mater 33:1530–1544CrossRef Jeong S, Kim J, Lee H (2004) Effect of cooling rate on growth of the intermetallic compound and fracture mode of near-eutectic Sn–Ag–Cu/Cu pad: before and after aging. J Electron Mater 33:1530–1544CrossRef
17.
go back to reference Andreas RF, Wolfgang N, Jürgen W (2008) Microstructural changes of lead-free solder joints during long-term ageing, thermal cycling and vibration fatigue. Solder Surf Mt Technol 20:13–21CrossRef Andreas RF, Wolfgang N, Jürgen W (2008) Microstructural changes of lead-free solder joints during long-term ageing, thermal cycling and vibration fatigue. Solder Surf Mt Technol 20:13–21CrossRef
18.
go back to reference Joo DK, Yu J, Shin SW (2003) Creep rupture of lead-free Sn-3.5Ag–Cu solders. J Electron Mater 32:541–547CrossRef Joo DK, Yu J, Shin SW (2003) Creep rupture of lead-free Sn-3.5Ag–Cu solders. J Electron Mater 32:541–547CrossRef
19.
go back to reference Lee W, Nguyen L, Selvaduray GS (2000) Solder joint fatigue models: review and applicability to chip scale packages. Microelectron Reliab 40:231–244CrossRef Lee W, Nguyen L, Selvaduray GS (2000) Solder joint fatigue models: review and applicability to chip scale packages. Microelectron Reliab 40:231–244CrossRef
20.
go back to reference Zhao J, Mutoh Y, Miyashita Y, Mannan SL (2002) Fatigue crack-growth behavior of Sn–Ag–Cu and Sn–Ag–Cu–Bi lead-free solders. J Electron Mater 31:879–886CrossRef Zhao J, Mutoh Y, Miyashita Y, Mannan SL (2002) Fatigue crack-growth behavior of Sn–Ag–Cu and Sn–Ag–Cu–Bi lead-free solders. J Electron Mater 31:879–886CrossRef
21.
go back to reference Frear DR, Vianco PT (1994) Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys. Metall Mater Trans A 25:1509–1523CrossRef Frear DR, Vianco PT (1994) Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys. Metall Mater Trans A 25:1509–1523CrossRef
22.
go back to reference Mahler DB, Adey JD (1977) Microprobe analysis of a high Cu amalgam alloy. J Dent Res 56:379–384CrossRef Mahler DB, Adey JD (1977) Microprobe analysis of a high Cu amalgam alloy. J Dent Res 56:379–384CrossRef
23.
25.
go back to reference Mitchell RJ, Okabe T (1996) Setting reactions in dental amalgam part 1. Phases and microstructures between one hour and one week. Crit Rev Oral Biol M 7:12–22CrossRef Mitchell RJ, Okabe T (1996) Setting reactions in dental amalgam part 1. Phases and microstructures between one hour and one week. Crit Rev Oral Biol M 7:12–22CrossRef
26.
go back to reference Acciari HA, Codaro EN, Guastaldi AC (1998) A comparative study of the corrosion of high copper dental amalgams. Mater Lett 36:148–151CrossRef Acciari HA, Codaro EN, Guastaldi AC (1998) A comparative study of the corrosion of high copper dental amalgams. Mater Lett 36:148–151CrossRef
27.
go back to reference Chung KH, Hsiao LY, Lin YS, Duh JG (2008) Morphology and electrochemical behavior of Ag–Cu nanoparticle-doped amalgams. Acta Biomater 4:717–724CrossRef Chung KH, Hsiao LY, Lin YS, Duh JG (2008) Morphology and electrochemical behavior of Ag–Cu nanoparticle-doped amalgams. Acta Biomater 4:717–724CrossRef
28.
go back to reference Williams PT, Hedge GL (1985) Creep-fatigue as a possible cause of dental amalgam margin failure. J Dent Res 64:470–475CrossRef Williams PT, Hedge GL (1985) Creep-fatigue as a possible cause of dental amalgam margin failure. J Dent Res 64:470–475CrossRef
29.
go back to reference Mahler DB, Adey JD (1991) Factors influencing the creep of dental amalgam. J Dent Res 70:1394–1400CrossRef Mahler DB, Adey JD (1991) Factors influencing the creep of dental amalgam. J Dent Res 70:1394–1400CrossRef
30.
31.
go back to reference Deng X, Chawla N, Chawla KK, Koopman M (2004) Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater 52:4291–4303CrossRef Deng X, Chawla N, Chawla KK, Koopman M (2004) Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater 52:4291–4303CrossRef
32.
go back to reference Deng X, Koopman M, Chawla N, Chawla KK (2004) Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation. Mater Sci Eng A 364:240–243CrossRef Deng X, Koopman M, Chawla N, Chawla KK (2004) Young’s modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation. Mater Sci Eng A 364:240–243CrossRef
33.
go back to reference Yang PF, Lai YS, Jian SR, Chen J, Chen RS (2008) Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater Sci Eng A 485:305–310CrossRef Yang PF, Lai YS, Jian SR, Chen J, Chen RS (2008) Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater Sci Eng A 485:305–310CrossRef
34.
go back to reference Marques VMF, Johnston C, Grant PS (2013) Nanomechanical characterization of Sn–Ag–Cu/Cu joints—part 1: Young’s modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater 61:2460–2470CrossRef Marques VMF, Johnston C, Grant PS (2013) Nanomechanical characterization of Sn–Ag–Cu/Cu joints—part 1: Young’s modulus, hardness and deformation mechanisms as a function of temperature. Acta Mater 61:2460–2470CrossRef
35.
go back to reference Marques VMF, Wunderle B, Johnston C, Grant PS (2013) Nanomechanical characterization of Sn–Ag–Cu/Cu joints—part 2: nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater 61:2471–2480CrossRef Marques VMF, Wunderle B, Johnston C, Grant PS (2013) Nanomechanical characterization of Sn–Ag–Cu/Cu joints—part 2: nanoindentation creep and its relationship with uniaxial creep as a function of temperature. Acta Mater 61:2471–2480CrossRef
36.
go back to reference Chang YA, Goldberg D, Neumann JP (1977) Phase diagrams and thermodynamic properties of ternary Cu–Ag systems. J Phys Chem Ref Data 6:621–673CrossRef Chang YA, Goldberg D, Neumann JP (1977) Phase diagrams and thermodynamic properties of ternary Cu–Ag systems. J Phys Chem Ref Data 6:621–673CrossRef
37.
go back to reference Karakaya I, Thompson WT (1987) The Ag–Sn (silver–tin) system. Bull Alloy Phase Diagr 8:340–347CrossRef Karakaya I, Thompson WT (1987) The Ag–Sn (silver–tin) system. Bull Alloy Phase Diagr 8:340–347CrossRef
38.
go back to reference Saunders N, Miodownik AP (1990) The Cu–Sn (copper–tin) system. Bull Alloy Phase Diagr 11:278–287CrossRef Saunders N, Miodownik AP (1990) The Cu–Sn (copper–tin) system. Bull Alloy Phase Diagr 11:278–287CrossRef
41.
go back to reference Gangulee A, Das GC, Bever MB (1973) X-ray-diffraction and calorimetric investigation of compound Cu6Sn5. Met Trans 4:2063–2066CrossRef Gangulee A, Das GC, Bever MB (1973) X-ray-diffraction and calorimetric investigation of compound Cu6Sn5. Met Trans 4:2063–2066CrossRef
42.
go back to reference Gebhardt E, Petzow G (1959) Ober den Aufbau des Systems Silber-Kupfer-Zinn. Z Metallkd 50:597–605 Gebhardt E, Petzow G (1959) Ober den Aufbau des Systems Silber-Kupfer-Zinn. Z Metallkd 50:597–605
43.
go back to reference Yoo MH (1981) Slip, twinning, and fracture in hexagonal close packed metals. Met Trans 12A:409–418CrossRef Yoo MH (1981) Slip, twinning, and fracture in hexagonal close packed metals. Met Trans 12A:409–418CrossRef
44.
go back to reference Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157CrossRef Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157CrossRef
Metadata
Title
Microstructural stability, defect structures and deformation mechanisms in a Ag3Sn/Cu3Sn alloy
Authors
Yu Sun
Haibo Yu
M. Tumerkan Kesim
S. Pamir Alpay
Mark Aindow
Publication date
01-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0590-4

Other articles of this Issue 5/2017

Journal of Materials Science 5/2017 Go to the issue

Premium Partners