Skip to main content
Top
Published in: Rare Metals 5/2024

02-01-2019

Microstructure and property of laser additive manufactured alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si after aged at different temperatures

Authors: Guo-Chao Li, Xu Cheng, Hua-Ming Wang

Published in: Rare Metals | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solid solution and aging treatment for conventional manufacturing processes might not be suitable for laser additive manufactured titanium alloys due to the different lamellar microstructures. In this study, the influence of aging temperatures (600, 700 and 800 °C) on microstructure and mechanical properties of titanium alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si was investigated. The results indicate that after solid solution treatment at 970 °C followed by water quenching, the alloy mainly consists of coarsening lamellar α phase in martensite α′ matrix. Aging at 600 °C will not change the size of primary lamellar α phase but lead to huge amount of secondary α phases (αs) generating with very fine microstructure. By increasing the aging temperature, the number of αs decreases but with coarsened microstructures. When aged at 800 °C, the width of the αs phase reaches 350 nm, almost 7 times wider than that aged at 600 °C. The changing size of αs obviously influences the property of the alloy. The fine αs leads to high strength and microhardness but low plasticity, and specimen aged at 700 °C with suitable αs size has the best comprehensive properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Leyens C, Peter M. Titanium and Titanium Alloys. Weinheim: Die Deutsche Bibliothek; 2006. 18. Leyens C, Peter M. Titanium and Titanium Alloys. Weinheim: Die Deutsche Bibliothek; 2006. 18.
[2]
go back to reference Lutjering G, Willams JC. Titanium. 2nd ed. Berlin: Springer; 2007. 13. Lutjering G, Willams JC. Titanium. 2nd ed. Berlin: Springer; 2007. 13.
[3]
go back to reference Zhang XY, Zhao YQ, Bai CG. Titanium Alloy and Application. Beijng: Chemical Industry Press; 2005. 287. Zhang XY, Zhao YQ, Bai CG. Titanium Alloy and Application. Beijng: Chemical Industry Press; 2005. 287.
[4]
go back to reference Singh P, Pungotra H, Kalsi NS. On the characteristics of titanium alloys for the aircraft applications. Mater Today. 2017;4(8):8971. Singh P, Pungotra H, Kalsi NS. On the characteristics of titanium alloys for the aircraft applications. Mater Today. 2017;4(8):8971.
[5]
go back to reference Roger RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103. Roger RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103.
[6]
go back to reference Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.CrossRef
[7]
go back to reference Moiseyev VN. Titanium Alloys: Russian Aircraft and Aerospace Applications. Encycl Aerosp Eng. 2005. 149. Moiseyev VN. Titanium Alloys: Russian Aircraft and Aerospace Applications. Encycl Aerosp Eng. 2005. 149.
[8]
go back to reference Li J, Wang HM. Aging response of laser melting deposited Ti–6Al–2Zr–1Mo–1V alloy. Mater Sci Eng A. 2013;560:193.CrossRef Li J, Wang HM. Aging response of laser melting deposited Ti–6Al–2Zr–1Mo–1V alloy. Mater Sci Eng A. 2013;560:193.CrossRef
[9]
go back to reference Huaming W. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. CJA. 2014;35(10):2699. Huaming W. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. CJA. 2014;35(10):2699.
[10]
go back to reference Herderick ED. Additive manufacturing in the minerals, metals, and materials community: past, present, and exciting future. JOM. 2016;68(3):721.CrossRef Herderick ED. Additive manufacturing in the minerals, metals, and materials community: past, present, and exciting future. JOM. 2016;68(3):721.CrossRef
[11]
go back to reference Hao Y-L, Li S-J, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.CrossRef Hao Y-L, Li S-J, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.CrossRef
[13]
go back to reference Eyers DR, Potter AT. Industrial additive manufacturing: a manufacturing systems perspective. Comput Ind. 2017;92–93:208.CrossRef Eyers DR, Potter AT. Industrial additive manufacturing: a manufacturing systems perspective. Comput Ind. 2017;92–93:208.CrossRef
[14]
go back to reference Tian XJ, Zhang SQ, Li A, Wang HM. Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn. Mater Sci Eng A. 2010;527(7-8):1821.CrossRef Tian XJ, Zhang SQ, Li A, Wang HM. Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5Mn. Mater Sci Eng A. 2010;527(7-8):1821.CrossRef
[15]
go back to reference Li C, Chen J, Li W, Ren YJ, He JJ, Song ZX. Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy. J Alloys Compd. 2016;684:466.CrossRef Li C, Chen J, Li W, Ren YJ, He JJ, Song ZX. Effect of heat treatment variations on the microstructure evolution and mechanical properties in a β metastable Ti alloy. J Alloys Compd. 2016;684:466.CrossRef
[16]
go back to reference Keist JS, Palmer TA. Role of geometry on properties of additively manufactured Ti–6Al–4V structures fabricated using laser based directed energy deposition. Mater Des. 2016;106:482.CrossRef Keist JS, Palmer TA. Role of geometry on properties of additively manufactured Ti–6Al–4V structures fabricated using laser based directed energy deposition. Mater Des. 2016;106:482.CrossRef
[17]
go back to reference Sieniawski J. Titanium Alloys-Advances in Properties Control. Rijeka: InTech; 2013. 45.CrossRef Sieniawski J. Titanium Alloys-Advances in Properties Control. Rijeka: InTech; 2013. 45.CrossRef
[18]
go back to reference Luo J, Ye P, Li MQ, Liu LY. Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy. Mater Des. 2015;88:32.CrossRef Luo J, Ye P, Li MQ, Liu LY. Effect of the alpha grain size on the deformation behavior during isothermal compression of Ti–6Al–4V alloy. Mater Des. 2015;88:32.CrossRef
[19]
go back to reference Mikler CV, Chaudhary V, Borkar T, Soni V, Jaeger D, Chen X, Contieri R, Ramanujan RV, Banerjee R. Laser additive manufacturing of magnetic materials. JOM. 2017;69(3):532.CrossRef Mikler CV, Chaudhary V, Borkar T, Soni V, Jaeger D, Chen X, Contieri R, Ramanujan RV, Banerjee R. Laser additive manufacturing of magnetic materials. JOM. 2017;69(3):532.CrossRef
[20]
go back to reference Kelly SM. Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds part 1: microstructural characterization. Metall Mater Trans A. 2004;35(6):1861.CrossRef Kelly SM. Microstructural evolution in laser-deposited multilayer Ti–6Al–4V builds part 1: microstructural characterization. Metall Mater Trans A. 2004;35(6):1861.CrossRef
[21]
go back to reference Sridharan N, Chaudhary A, Nandwana P, Babu SS. Texture evolution during laser direct metal deposition of Ti–6Al–4V. JOM. 2016;68(3):772.CrossRef Sridharan N, Chaudhary A, Nandwana P, Babu SS. Texture evolution during laser direct metal deposition of Ti–6Al–4V. JOM. 2016;68(3):772.CrossRef
[22]
go back to reference Lu Y, Tang HB, Fang YL, Liu D, Wang HM. Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V alloy. Mater Des. 2012;37:56.CrossRef Lu Y, Tang HB, Fang YL, Liu D, Wang HM. Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V alloy. Mater Des. 2012;37:56.CrossRef
[23]
go back to reference Beese AM, Carroll BE. Review of mechanical properties of Ti–6Al–4V made by laser-based additive manufacturing using powder feedstock. JOM. 2016;68(3):724.CrossRef Beese AM, Carroll BE. Review of mechanical properties of Ti–6Al–4V made by laser-based additive manufacturing using powder feedstock. JOM. 2016;68(3):724.CrossRef
[24]
go back to reference Marshall GJ, Young WJ, Thompson SM, Shamsaei N, Daniewicz SR, Shao S. Understanding the microstructure formation of Ti–6Al–4V during direct laser deposition via in-situ thermal monitoring. JOM. 2016;68(3):778.CrossRef Marshall GJ, Young WJ, Thompson SM, Shamsaei N, Daniewicz SR, Shao S. Understanding the microstructure formation of Ti–6Al–4V during direct laser deposition via in-situ thermal monitoring. JOM. 2016;68(3):778.CrossRef
[25]
go back to reference Zhu Y, Liu D, Tian X, Tang H, Wang H. Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater Des. 2014;56:445.CrossRef Zhu Y, Liu D, Tian X, Tang H, Wang H. Characterization of microstructure and mechanical properties of laser melting deposited Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater Des. 2014;56:445.CrossRef
[26]
go back to reference Liu CM, Wang HM, Tian XJ, Tang HB, Liu D. Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2013;586:323.CrossRef Liu CM, Wang HM, Tian XJ, Tang HB, Liu D. Microstructure and tensile properties of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater Sci Eng A. 2013;586:323.CrossRef
[27]
go back to reference Liu C, Yu L, Zhang A, Tian X, Liu D, Ma S. Beta heat treatment of laser melting deposited high strength near β titanium alloy. Mater Sci Eng A. 2016;673:185.CrossRef Liu C, Yu L, Zhang A, Tian X, Liu D, Ma S. Beta heat treatment of laser melting deposited high strength near β titanium alloy. Mater Sci Eng A. 2016;673:185.CrossRef
[28]
go back to reference Li GC, Li J, Tian XJ, Cheng X, He B, Wang HM. Microstructure and properties of a novel titanium alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si manufactured by laser additive manufacturing. Mater Sci Eng A. 2017;684:233.CrossRef Li GC, Li J, Tian XJ, Cheng X, He B, Wang HM. Microstructure and properties of a novel titanium alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si manufactured by laser additive manufacturing. Mater Sci Eng A. 2017;684:233.CrossRef
[29]
go back to reference Imayev VM, Gaisin RA, Gaisina ER, Imayev RM. Microstructure, processing and mechanical properties of a titanium alloy Ti–20Zr–6.5Al–3.3Mo–0.3Si–0.1B. Mater Sci Eng A. 2017;696:137.CrossRef Imayev VM, Gaisin RA, Gaisina ER, Imayev RM. Microstructure, processing and mechanical properties of a titanium alloy Ti–20Zr–6.5Al–3.3Mo–0.3Si–0.1B. Mater Sci Eng A. 2017;696:137.CrossRef
[30]
go back to reference China Materials Engineering Canon. Nonferrous Metal Material Engineering. Beijing: Chemical Industry Press; 2006. 85. China Materials Engineering Canon. Nonferrous Metal Material Engineering. Beijing: Chemical Industry Press; 2006. 85.
[31]
go back to reference Zhong QP, Zhao ZH. Crack. Beijing: Higher Education Press; 2014. 12. Zhong QP, Zhao ZH. Crack. Beijing: Higher Education Press; 2014. 12.
Metadata
Title
Microstructure and property of laser additive manufactured alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si after aged at different temperatures
Authors
Guo-Chao Li
Xu Cheng
Hua-Ming Wang
Publication date
02-01-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2024
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1188-6

Other articles of this Issue 5/2024

Rare Metals 5/2024 Go to the issue

Premium Partners