Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2022

16-05-2022 | Technical Article

Microstructure Characteristics and Strengthening Mechanism of Martensitic Steel at Two Quenching Rates

Authors: Chunhui Li, Xiaoyuan Li, Wenchao Yu, Jie Shi, Maoqiu Wang, Run Wu

Published in: Journal of Materials Engineering and Performance | Issue 11/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultra-fast cooling has been increasingly applied in producing high-strength steels. In this study, the microstructure and mechanical properties of a martensitic steel quenched at an ultra-fast cooling rate were studied and compared with those of the steel quenched at a conventional water-cooling rate. The results showed that the tensile strength and yield strength of the ultra-fast cooled specimens were approximately 150 and 208 MPa higher than those of the conventional water-cooled specimens, respectively. The increases could be attributed mainly to dislocation strengthening according to the theoretically calculated results of dislocation strengthening on the basis of the measured values of dislocation density, which was increased from 1.26 10–16 to 1.60 × 10–16 m–2 when the cooling rate increased to ultra-fast region. Thus, the results of this study mean that the strength of martensitic steels could be improved through ultra-fast cooling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Yin, K. Xu, H. Nie, X. Wei and Z. Zhang, Research on the Performance of an Aircraft Landing Gear Hook Lock Based on Bifurcation Analysis, J. Appl. Sci., 2019, 9(24), p 5278. Y. Yin, K. Xu, H. Nie, X. Wei and Z. Zhang, Research on the Performance of an Aircraft Landing Gear Hook Lock Based on Bifurcation Analysis, J. Appl. Sci., 2019, 9(24), p 5278.
2.
go back to reference G. Liang, Q. Tan, Y. Liu, T. Wu and M.X. Zhang, Effect of Cooling Rate on Microstructure and Mechanical Properties of a Low-Carbon Low-Alloy Steel, J. Mater. Sci., 2021, 56(5), p 1–11. G. Liang, Q. Tan, Y. Liu, T. Wu and M.X. Zhang, Effect of Cooling Rate on Microstructure and Mechanical Properties of a Low-Carbon Low-Alloy Steel, J. Mater. Sci., 2021, 56(5), p 1–11.
3.
go back to reference Z. Tao, Y. Hao and S. Wang, Effect of Microstructural Types on toughness and Microstructural Optimization of Ultra-Heavy Steel Plate: EBSD analysis and Microscopic Fracture Mechanism, Mater. Sci. Eng. A, 2016, 658, p 150–158. Z. Tao, Y. Hao and S. Wang, Effect of Microstructural Types on toughness and Microstructural Optimization of Ultra-Heavy Steel Plate: EBSD analysis and Microscopic Fracture Mechanism, Mater. Sci. Eng. A, 2016, 658, p 150–158.
4.
go back to reference X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma and S.V. Subramanian, New Insights into the Mechanism of Cooling Rate on the Impact Toughness of Coarse Grained Heat Affected Zone from the Aspect of Variant Selection, Mater. Sci. Eng. A, 2017, 704(17), p 448–458. X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma and S.V. Subramanian, New Insights into the Mechanism of Cooling Rate on the Impact Toughness of Coarse Grained Heat Affected Zone from the Aspect of Variant Selection, Mater. Sci. Eng. A, 2017, 704(17), p 448–458.
5.
go back to reference V. Verma, U. Prakash, P.C. Tewari and D. Khanduja, Effect of Quenching Medium on Microstructure and Hardness of as Sintered Fe-Cr-Mo-0.6C and Fe-Mo-0.6C Alloy Steel, Mater. Today, 2017, 4, p 459–464. V. Verma, U. Prakash, P.C. Tewari and D. Khanduja, Effect of Quenching Medium on Microstructure and Hardness of as Sintered Fe-Cr-Mo-0.6C and Fe-Mo-0.6C Alloy Steel, Mater. Today, 2017, 4, p 459–464.
6.
go back to reference Y. Zheng, F. Wang, C. Li, Y. Lin and R. Cao, Effect of Martensite Structure and Carbide Precipitates on Mechanical Properties of Cr-Mo Alloy Steel with Different Cooling Rate, High Temp. Mater. Process., 2018, 38, p 113–124. Y. Zheng, F. Wang, C. Li, Y. Lin and R. Cao, Effect of Martensite Structure and Carbide Precipitates on Mechanical Properties of Cr-Mo Alloy Steel with Different Cooling Rate, High Temp. Mater. Process., 2018, 38, p 113–124.
7.
go back to reference Z.X. Qiao, Y.C. Liu, L.M. Yu and Z.M. Gao, Effect of Cooling Rate on Microstructural Formation and Hardness of 30CrNi3Mo Steel, Appl. Phys. A, 2009, 95(3), p 917–922. Z.X. Qiao, Y.C. Liu, L.M. Yu and Z.M. Gao, Effect of Cooling Rate on Microstructural Formation and Hardness of 30CrNi3Mo Steel, Appl. Phys. A, 2009, 95(3), p 917–922.
8.
go back to reference Y.P. Ji, Z.C. Liu and H.P. Ren, Morphology and Formation Mechanism of Martensite in Steels with Different Carbon Content, Adv. Mater. Res., 2011, 201–203, p 1612–1618. Y.P. Ji, Z.C. Liu and H.P. Ren, Morphology and Formation Mechanism of Martensite in Steels with Different Carbon Content, Adv. Mater. Res., 2011, 201–203, p 1612–1618.
9.
go back to reference Z.N. Zhou, H. Akamine, J. Li, L. Yang and J.G. Li, Tuning Martensite Transformation Behavior and Magneto-Caloric Effect in Ni44Mn36In14Co6 alloy through Doping the fifth Element Cu, J. Alloys Compd., 2019, 817, p 153150. Z.N. Zhou, H. Akamine, J. Li, L. Yang and J.G. Li, Tuning Martensite Transformation Behavior and Magneto-Caloric Effect in Ni44Mn36In14Co6 alloy through Doping the fifth Element Cu, J. Alloys Compd., 2019, 817, p 153150.
10.
go back to reference S. Morito, K. Oh-Ishi, K. Hono and T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int., 2011, 51(7), p 1200–1202. S. Morito, K. Oh-Ishi, K. Hono and T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int., 2011, 51(7), p 1200–1202.
11.
go back to reference A. Ajami, H. Mirzadeh and M. Najafi, Tempering of Cold-Rolled Martensite in Mild Steel and Elucidating the Effects of Alloying Elements, J. Mater. Eng. Perform., 2020, 29(2), p 858–865. A. Ajami, H. Mirzadeh and M. Najafi, Tempering of Cold-Rolled Martensite in Mild Steel and Elucidating the Effects of Alloying Elements, J. Mater. Eng. Perform., 2020, 29(2), p 858–865.
12.
go back to reference S. Morito, T. Ohba and A.K. Das, Effect of Solution Carbon and Retained Austenite Films on the Development of Deformation Structures of Low-Carbon Lath Martensite, ISIJ Int., 2013, 53(12), p 2226–2232. S. Morito, T. Ohba and A.K. Das, Effect of Solution Carbon and Retained Austenite Films on the Development of Deformation Structures of Low-Carbon Lath Martensite, ISIJ Int., 2013, 53(12), p 2226–2232.
13.
go back to reference K. Taylor and S. Hansen, Effects of Vanadium and Processing Parameters on the Structures and Properties of a Direct-Quenched Low-Carbon Mo-B Steel, Metall. Trans. A, 1991, 22, p 2359–2374. K. Taylor and S. Hansen, Effects of Vanadium and Processing Parameters on the Structures and Properties of a Direct-Quenched Low-Carbon Mo-B Steel, Metall. Trans. A, 1991, 22, p 2359–2374.
14.
go back to reference S. Kennett, G. Krauss and K. Findley, Prior Austenite Grain Size and Tempering Effects on the Dislocation Density of low-C Nb–Ti Microalloyed Lath Martensite, Scr. Mater., 2015, 107, p 123–126. S. Kennett, G. Krauss and K. Findley, Prior Austenite Grain Size and Tempering Effects on the Dislocation Density of low-C Nb–Ti Microalloyed Lath Martensite, Scr. Mater., 2015, 107, p 123–126.
15.
go back to reference E.I. Galindo-Nava and P.E.J. Rivera-Diaz-Castillo, A model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93. E.I. Galindo-Nava and P.E.J. Rivera-Diaz-Castillo, A model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93.
16.
go back to reference C. Moussa, M. Bernacki, R. Bensnard and N. Bozzolo, Statistical Analysis of Dislocations and Dislocation Boundaries from EBSD Data, Ultramicroscopy, 2017, 179, p 63–72. C. Moussa, M. Bernacki, R. Bensnard and N. Bozzolo, Statistical Analysis of Dislocations and Dislocation Boundaries from EBSD Data, Ultramicroscopy, 2017, 179, p 63–72.
17.
go back to reference A.D.C. Saha, B.E. Biro, A.A.P. Gerlich and A.Y. Zhou, Effects of Tempering Mode on the Structural Changes of Martensite, Mater. Sci. Eng. A, 2016, 673, p 467–475. A.D.C. Saha, B.E. Biro, A.A.P. Gerlich and A.Y. Zhou, Effects of Tempering Mode on the Structural Changes of Martensite, Mater. Sci. Eng. A, 2016, 673, p 467–475.
18.
go back to reference T. Ungar and A. Borbely, The Effect of Dislocation Contrast on X-Ray Line Broadening: A New Approach to line Profile analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175. T. Ungar and A. Borbely, The Effect of Dislocation Contrast on X-Ray Line Broadening: A New Approach to line Profile analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175.
19.
go back to reference F. HajyAkbary, J. Sitetsma, A.J. Böttger and M.J. Santofimia, An Improved X-Ray diffraction analysis Method to Characterize Dislocation Density in Lath Martensitic Structures, Mater. Sci. Eng. A, 2015, 639, p 208–218. F. HajyAkbary, J. Sitetsma, A.J. Böttger and M.J. Santofimia, An Improved X-Ray diffraction analysis Method to Characterize Dislocation Density in Lath Martensitic Structures, Mater. Sci. Eng. A, 2015, 639, p 208–218.
20.
go back to reference R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuku and A. Moslang, X-ray Evaluation of Dislocation Density in ODS-Eurofer Steel, Mater. Sci. Eng. A, 2012, 534, p 142–146. R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuku and A. Moslang, X-ray Evaluation of Dislocation Density in ODS-Eurofer Steel, Mater. Sci. Eng. A, 2012, 534, p 142–146.
21.
go back to reference S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by some X-ray Diffraction Methods, ISIJ Int., 2010, 50, p 875–882. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by some X-ray Diffraction Methods, ISIJ Int., 2010, 50, p 875–882.
22.
go back to reference S.L. Long, Y.L. Liang, Y. Jiang, M. Yang and Y.L. Yi, Effect of Quenching Temperature on Martensite Multi-Level Microstructures and Properties of Strength and Toughness in 20CrNi2Mo Steel, Mater. Sci. Eng. A, 2016, 676(31), p 38–47. S.L. Long, Y.L. Liang, Y. Jiang, M. Yang and Y.L. Yi, Effect of Quenching Temperature on Martensite Multi-Level Microstructures and Properties of Strength and Toughness in 20CrNi2Mo Steel, Mater. Sci. Eng. A, 2016, 676(31), p 38–47.
23.
go back to reference C. Wang, M. Wang, S. Jie, W. Hui and D. Han, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 2007, 05, p 87–92. C. Wang, M. Wang, S. Jie, W. Hui and D. Han, Effect of Microstructure Refinement on the Strength and Toughness of Low Alloy Martensitic Steel, J. Mater. Sci. Technol., 2007, 05, p 87–92.
24.
go back to reference Y. Zheng, F. Wang, C. Li, Y. Li and C. Jin, Microstructural Evolution, Coarsening Behavior of Precipitates and Mechanical properties of Boron Bearing Steel 25CrMoNbB During Tempering, Mater. Sci. Eng. A, 2018, 712, p 453–465. Y. Zheng, F. Wang, C. Li, Y. Li and C. Jin, Microstructural Evolution, Coarsening Behavior of Precipitates and Mechanical properties of Boron Bearing Steel 25CrMoNbB During Tempering, Mater. Sci. Eng. A, 2018, 712, p 453–465.
25.
go back to reference Y. Han, J. Shi, L. Xu, W.Q. Cao and H. Dong, Effect of hot Rolling Temperature on Grain size and precipitation Hardening in a Ti-Microalloyed Low-Carbon Martensitic Steel, Mater. Sci. Eng. A, 2012, 553, p 192–199. Y. Han, J. Shi, L. Xu, W.Q. Cao and H. Dong, Effect of hot Rolling Temperature on Grain size and precipitation Hardening in a Ti-Microalloyed Low-Carbon Martensitic Steel, Mater. Sci. Eng. A, 2012, 553, p 192–199.
26.
go back to reference K. Takeda, N. Nakada, T. Tsuchiyama and T. Setsuo, Effect of Interstitial Elements on Hall-Petch Coefficient of Ferritic Iron, ISIJ Int., 2008, 48(8), p 1122–1125. K. Takeda, N. Nakada, T. Tsuchiyama and T. Setsuo, Effect of Interstitial Elements on Hall-Petch Coefficient of Ferritic Iron, ISIJ Int., 2008, 48(8), p 1122–1125.
27.
go back to reference B. Li, Y. Shen and Q, An, Structural Origin of Reversible Martensitic Transformation and Reversible Twinning in NiTi shape Memory Alloy, Acta Mater., 2020, 199, p 240–252. B. Li, Y. Shen and Q, An, Structural Origin of Reversible Martensitic Transformation and Reversible Twinning in NiTi shape Memory Alloy, Acta Mater., 2020, 199, p 240–252.
28.
go back to reference L.C. Chang and H.K.D.H. Bhadeshia, Carbon Content of Austenite in Isothermally Transformed 300M Steel, Mater. Sci. Eng. A, 1994, 184, p L17–L19. L.C. Chang and H.K.D.H. Bhadeshia, Carbon Content of Austenite in Isothermally Transformed 300M Steel, Mater. Sci. Eng. A, 1994, 184, p L17–L19.
29.
go back to reference B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez and Y.D. Carlan, Tailoring the Microstructure and the Mechanical Properties of Ultrafine Grained High Strength Ferritic Steels by Powder Metallurgy, J. Nucl. Mater., 2015, 465, p 54–62. B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez and Y.D. Carlan, Tailoring the Microstructure and the Mechanical Properties of Ultrafine Grained High Strength Ferritic Steels by Powder Metallurgy, J. Nucl. Mater., 2015, 465, p 54–62.
30.
go back to reference P. Susila, D. Sturm, M. Heilmaier, B.S. Murty and V. Subramanya Sarma, Effect of Yttria Particle Size on the Microstructure and Compression Creep Properties of Nanostructured Oxide Dispersion Strengthened Ferritic (Fe–12Cr–2W–0.5Y2O3) alloy, Mater. Sci. Eng. A, 2011, 528(13–14), p 4579–4584. https://doi.org/10.1016/j.msea.2011.02.078CrossRef P. Susila, D. Sturm, M. Heilmaier, B.S. Murty and V. Subramanya Sarma, Effect of Yttria Particle Size on the Microstructure and Compression Creep Properties of Nanostructured Oxide Dispersion Strengthened Ferritic (Fe–12Cr–2W–0.5Y2O3) alloy, Mater. Sci. Eng. A, 2011, 528(13–14), p 4579–4584. https://​doi.​org/​10.​1016/​j.​msea.​2011.​02.​078CrossRef
32.
go back to reference E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. R. Soc., 1951, 643(9), p 747–752. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. R. Soc., 1951, 643(9), p 747–752.
33.
go back to reference N.J. Petch, The Cleavage Strength of Polycrystals, Iron Steel Inst., 1953, 174, p 25–28. N.J. Petch, The Cleavage Strength of Polycrystals, Iron Steel Inst., 1953, 174, p 25–28.
34.
go back to reference S. Takaki, K.L. Ngo-Huynh, N. Nakada and T. Tsuchiyama, Strengthening Mechanisms in Low Carbon Martensitic Steels, ISIJ Int., 2012, 52(4), p 710–716. S. Takaki, K.L. Ngo-Huynh, N. Nakada and T. Tsuchiyama, Strengthening Mechanisms in Low Carbon Martensitic Steels, ISIJ Int., 2012, 52(4), p 710–716.
35.
go back to reference J. Hu, L.X. Du, H. Xie, X.H. Gao and R.D.K. Misra, Microstructure and Mechanical Properties of TMCP Heavy Plate Microalloyed Steel, Mater. Sci. Eng. A, 2014, 607, p 122–131. J. Hu, L.X. Du, H. Xie, X.H. Gao and R.D.K. Misra, Microstructure and Mechanical Properties of TMCP Heavy Plate Microalloyed Steel, Mater. Sci. Eng. A, 2014, 607, p 122–131.
36.
go back to reference B.B. Wu, S. Huang, Z.Q. Wang, J.X. Zhao, C.S. Wang, C.J. Shang and R.D.K. Misa, Crystallography Analysis of Toughness in High Strength Ultra-Heavy Plate Steel, Mater. Lett., 2019, 250(1), p 55–59. B.B. Wu, S. Huang, Z.Q. Wang, J.X. Zhao, C.S. Wang, C.J. Shang and R.D.K. Misa, Crystallography Analysis of Toughness in High Strength Ultra-Heavy Plate Steel, Mater. Lett., 2019, 250(1), p 55–59.
38.
go back to reference A.K. Panda, J.N. Mohapatra, P. Murugaiyan, R.K. Roy and A. Mitra, Impact of Pre-formed Martensite on the Electromagnetic Properties and Martensitic Transformation Kinetics of Uniaxially Tensile Loaded 304 Stainless Steel, J. Mater. Eng. Perform., 2020, 29(11), p 7141–7152. A.K. Panda, J.N. Mohapatra, P. Murugaiyan, R.K. Roy and A. Mitra, Impact of Pre-formed Martensite on the Electromagnetic Properties and Martensitic Transformation Kinetics of Uniaxially Tensile Loaded 304 Stainless Steel, J. Mater. Eng. Perform., 2020, 29(11), p 7141–7152.
39.
go back to reference M. Jung, M. Kang, W. Woo and Y.K. Lee, Evaluations of Stress-free Lattice Spacings and Residual Stresses in a Quenched Carbon Steel Cylinder Using Neutron Diffraction, Mater. Sci. Eng. A, 2013, 565, p 392–395. M. Jung, M. Kang, W. Woo and Y.K. Lee, Evaluations of Stress-free Lattice Spacings and Residual Stresses in a Quenched Carbon Steel Cylinder Using Neutron Diffraction, Mater. Sci. Eng. A, 2013, 565, p 392–395.
40.
go back to reference Z. Zhou, P.F. Thomson, Y.C. Lam and D. Yuen, Numerical Analysis of Residual Stress in Hot-Rolled Steel Strip on the Run-Out Table, J. Mater. Process. Technol., 2003, 132(02), p 184–197. Z. Zhou, P.F. Thomson, Y.C. Lam and D. Yuen, Numerical Analysis of Residual Stress in Hot-Rolled Steel Strip on the Run-Out Table, J. Mater. Process. Technol., 2003, 132(02), p 184–197.
41.
go back to reference A. Yamanaka, T. Takaki and Y. Tomita, Coupled Simulation of Microstructural Formation and Deformation Behavior of Ferrite–Pearlite Steel by Phase-Field Method and Homogenization Method, Mater. Sci. Eng. A, 2008, 480(1–2), p 244–252. A. Yamanaka, T. Takaki and Y. Tomita, Coupled Simulation of Microstructural Formation and Deformation Behavior of Ferrite–Pearlite Steel by Phase-Field Method and Homogenization Method, Mater. Sci. Eng. A, 2008, 480(1–2), p 244–252.
42.
go back to reference N. Nakada, Y. Ishibashi, T. Tsuchiyama and S. Takaki, Self-stabilization of Untransformed Austenite by Hydrostatic Pressure Via Martensitic Transformation, Acta Mater., 2016, 110, p 95–102. N. Nakada, Y. Ishibashi, T. Tsuchiyama and S. Takaki, Self-stabilization of Untransformed Austenite by Hydrostatic Pressure Via Martensitic Transformation, Acta Mater., 2016, 110, p 95–102.
43.
go back to reference M. Villa, K. Pantleon and M.A.J. Somers, In Situ Investigation of the Martensitic Transformation in Fe–12 wt.%Ni–0.6 wt.% C Steel at Subzero Temperatures, J. Alloys Compd., 2013, 577, p S543–S548. M. Villa, K. Pantleon and M.A.J. Somers, In Situ Investigation of the Martensitic Transformation in Fe–12 wt.%Ni–0.6 wt.% C Steel at Subzero Temperatures, J. Alloys Compd., 2013, 577, p S543–S548.
44.
go back to reference L.J. Fan, Y.B. Zhong, Y.L. Xu, T.X. Zheng and Z.M. Ren, Promoted Diffusion Mechanism of Fe2.7wt.%Si-Fe10wt.%Si Couples Under Magnetic Field by Atomic-Scale Observations, Sci. Rep., 2019, 9(1), p 1–9. L.J. Fan, Y.B. Zhong, Y.L. Xu, T.X. Zheng and Z.M. Ren, Promoted Diffusion Mechanism of Fe2.7wt.%Si-Fe10wt.%Si Couples Under Magnetic Field by Atomic-Scale Observations, Sci. Rep., 2019, 9(1), p 1–9.
Metadata
Title
Microstructure Characteristics and Strengthening Mechanism of Martensitic Steel at Two Quenching Rates
Authors
Chunhui Li
Xiaoyuan Li
Wenchao Yu
Jie Shi
Maoqiu Wang
Run Wu
Publication date
16-05-2022
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06985-0

Other articles of this Issue 11/2022

Journal of Materials Engineering and Performance 11/2022 Go to the issue

Premium Partners