Skip to main content
Top
Published in: Metallurgist 9-10/2022

01-02-2022

Microwave Sintering of Metal Powder Materials (Review)

Authors: R. V. Batienkov, A. N. Bol’shakova, A. A. Khudnev

Published in: Metallurgist | Issue 9-10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents information about the history of using microwave energy in various fields along with brief description of the theory of microwave heating, its advantages and disadvantages. A review of the results of recent studies in the field of sintering metal powders and composite materials using microwave energy is performed. The use of microwave heating becomes of interest when it comes to additive technologies utilized during synthesis of the parts, as well as post-processing of the 3D-printed products.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference A. S. Vanetsev, Sintering of Oxide Powders using Microwave Exposure. Problem Descriptions from Special Practicum “Methods for the Production and Analysis of Inorganic Materials” [in Russian], Moscow State University, Moscow (2011). A. S. Vanetsev, Sintering of Oxide Powders using Microwave Exposure. Problem Descriptions from Special Practicum “Methods for the Production and Analysis of Inorganic Materials” [in Russian], Moscow State University, Moscow (2011).
4.
go back to reference A. S. Vanetsev and Yu. D. Tretyakov, “Microwave synthesis of individual and multicomponent oxides,” Uspekhi Khimii, No. 76 (5), 435–453 (2007). A. S. Vanetsev and Yu. D. Tretyakov, “Microwave synthesis of individual and multicomponent oxides,” Uspekhi Khimii, No. 76 (5), 435–453 (2007).
6.
go back to reference R. T. Hitchcock, Radio-Frequency and Microwave Radiation, American Industrial Hygiene Assn. (2004), ISBN 978-1931504553. R. T. Hitchcock, Radio-Frequency and Microwave Radiation, American Industrial Hygiene Assn. (2004), ISBN 978-1931504553.
7.
go back to reference P. R. Matli, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Microwave rapid sintering of al-metal matrix composites: a review on the effect of reinforcements, microstructure and mechanical properties,” Metals, No. 6, 143 (2016); DOI:https://doi.org/10.3390/met6070143. P. R. Matli, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Microwave rapid sintering of al-metal matrix composites: a review on the effect of reinforcements, microstructure and mechanical properties,” Metals, No. 6, 143 (2016); DOI:https://​doi.​org/​10.​3390/​met6070143.
8.
go back to reference J. W. Walkiewicz, G. Kazonich, and S. L. McGill, “Microwave heating characteristics of selected minerals and compounds,” Min. Metall Process., No. 5, 39–42 (1988). J. W. Walkiewicz, G. Kazonich, and S. L. McGill, “Microwave heating characteristics of selected minerals and compounds,” Min. Metall Process., No. 5, 39–42 (1988).
9.
go back to reference R. Roy, D. Agarwal, J. P. Chen, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field,” Nature, No. 399, 668–670 (1999). R. Roy, D. Agarwal, J. P. Chen, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field,” Nature, No. 399, 668–670 (1999).
10.
go back to reference M. Bhattacharya and T. Basak, “A review on the susceptor assisted microwave processing of materials,” Energy, 97, 306–338 (2016).CrossRef M. Bhattacharya and T. Basak, “A review on the susceptor assisted microwave processing of materials,” Energy, 97, 306–338 (2016).CrossRef
11.
go back to reference R. R. Mishra, S. Rajesha, and A. K. Sharma, “Microwave sintering of pure metal powders – a review,” Int. J. of Advanced Mechanical Engineering, 4, No. 3, 315–322 (2014). R. R. Mishra, S. Rajesha, and A. K. Sharma, “Microwave sintering of pure metal powders – a review,” Int. J. of Advanced Mechanical Engineering, 4, No. 3, 315–322 (2014).
12.
go back to reference G. Sethi, A. Upadhyaya, and D. Agrawal, “Microwave and conventional sintering of pre-mixed and prealloyed Cu–12Sn bronze,” Sci of Sintering, No. 35, 49–65 (2003). G. Sethi, A. Upadhyaya, and D. Agrawal, “Microwave and conventional sintering of pre-mixed and prealloyed Cu–12Sn bronze,” Sci of Sintering, No. 35, 49–65 (2003).
13.
go back to reference S. Takayama, G. Link, S. Miksch, M. Sato, J. Ichikawa, and M. Thumm, “Millimeter wave effects on sintering behavior of metal powder compacts,” Powder Metallurgy, 49, No. 3, 274–280 (2006). S. Takayama, G. Link, S. Miksch, M. Sato, J. Ichikawa, and M. Thumm, “Millimeter wave effects on sintering behavior of metal powder compacts,” Powder Metallurgy, 49, No. 3, 274–280 (2006).
14.
go back to reference M. Mahmoud, G. Link, J. Jelonnek, and M. Thumm, “Investigation on mm-wave sintering of metal powder compacts using in-situ dilatometry and electrical resistivity measurements,” 10th International Workshop – 2017 “Strong Microwaves and Terahertz Waves: Sources and Applications,” EPJ Web of Conferences, 149, No. 02007, 1–2 (2017); DOI: https://doi.org/10.1051/epjconf/201714902007. M. Mahmoud, G. Link, J. Jelonnek, and M. Thumm, “Investigation on mm-wave sintering of metal powder compacts using in-situ dilatometry and electrical resistivity measurements,” 10th International Workshop – 2017 “Strong Microwaves and Terahertz Waves: Sources and Applications,” EPJ Web of Conferences, 149, No. 02007, 1–2 (2017); DOI: https://​doi.​org/​10.​1051/​epjconf/​201714902007.
15.
go back to reference R. Rummana, L. C. Chuanc, J. S. Quintona, and R. Ghomashchib, “Understanding the potential of microwave sintering on WC–Co,” Int. J. of Refractory Metals & Hard Materials, No. 81, 7–14 (2019). R. Rummana, L. C. Chuanc, J. S. Quintona, and R. Ghomashchib, “Understanding the potential of microwave sintering on WC–Co,” Int. J. of Refractory Metals & Hard Materials, No. 81, 7–14 (2019).
16.
go back to reference S. C. Tao, J. L. Xu, L. Yuan, J. M. Luo, and Y. F. Zheng, “Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys,” J. of Alloys and Compounds, 812, 152142 (2020).CrossRef S. C. Tao, J. L. Xu, L. Yuan, J. M. Luo, and Y. F. Zheng, “Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti–3Cu alloys,” J. of Alloys and Compounds, 812, 152142 (2020).CrossRef
17.
go back to reference L. Bolzoni, S. Raynova, and F. Yang, “Work hardening of microwave sintered blended elemental Ti alloys,” J. of Alloys and Compounds, 838, 155559 (2020).CrossRef L. Bolzoni, S. Raynova, and F. Yang, “Work hardening of microwave sintered blended elemental Ti alloys,” J. of Alloys and Compounds, 838, 155559 (2020).CrossRef
18.
go back to reference S. Raynova, M. A. Imam, F. Yang, and L. Bolzoni, “Hybrid microwave sintering of blended elemental Ti alloys,” J. of Manufacturing Processes, No. 39, 52–57 (2019). S. Raynova, M. A. Imam, F. Yang, and L. Bolzoni, “Hybrid microwave sintering of blended elemental Ti alloys,” J. of Manufacturing Processes, No. 39, 52–57 (2019).
19.
go back to reference W. Xu, J. Yuan, Z. Yin, M. Chen, and Z. Wang, “Effect of metal phases on microstructure and mechanical properties of Si3N4-based ceramic tool materials by microwave sintering,” Ceramics International, No. 44, 19872–19878 (2018). W. Xu, J. Yuan, Z. Yin, M. Chen, and Z. Wang, “Effect of metal phases on microstructure and mechanical properties of Si3N4-based ceramic tool materials by microwave sintering,” Ceramics International, No. 44, 19872–19878 (2018).
20.
go back to reference M. Hossein-Zadeh, E. Ghasali, O. Mirzaee, H. Mohammadian-Semnani, M. Alizadeh, Y. Orooji, and T. Ebadzadeh, “An investigation into the microstructure and mechanical properties of V2AlC MAX phase prepared by microwave sintering,” J. of Alloys and Compounds, 795, 291–303 (2019).CrossRef M. Hossein-Zadeh, E. Ghasali, O. Mirzaee, H. Mohammadian-Semnani, M. Alizadeh, Y. Orooji, and T. Ebadzadeh, “An investigation into the microstructure and mechanical properties of V2AlC MAX phase prepared by microwave sintering,” J. of Alloys and Compounds, 795, 291–303 (2019).CrossRef
21.
go back to reference E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, T. Ebadzadeh, “Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process,” Materials Chemistry and Physics, No. 225, 331–339 (2019). E. Ghasali, A. Bordbar-Khiabani, M. Alizadeh, M. Mozafari, M. Niazmand, H. Kazemzadeh, T. Ebadzadeh, “Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process,” Materials Chemistry and Physics, No. 225, 331–339 (2019).
22.
go back to reference Z. Zhao, G. Zhang, S. Wang, X. Zhao, and C. Guan, “Preparation of ultrafine cemented carbides with uniform structure and high properties by microwave sintering,” Materials Letters, 260, 126971 (2020).CrossRef Z. Zhao, G. Zhang, S. Wang, X. Zhao, and C. Guan, “Preparation of ultrafine cemented carbides with uniform structure and high properties by microwave sintering,” Materials Letters, 260, 126971 (2020).CrossRef
23.
go back to reference K. I. Rybakov and I. I. Volkovskaya, “Electromagnetic field effects in the microwave sintering of electrically conductive powders,” Ceramics International, No. 45, 9567–9572 (2019). K. I. Rybakov and I. I. Volkovskaya, “Electromagnetic field effects in the microwave sintering of electrically conductive powders,” Ceramics International, No. 45, 9567–9572 (2019).
24.
go back to reference M. Darabi, M. Rajabi, and N. Nasiri, “Microstructural, mechanical and thermal properties of microwave sintered Cu–MWCNT nanocomposites,” J. of Alloys and Compounds, 822, 153675 (2020).CrossRef M. Darabi, M. Rajabi, and N. Nasiri, “Microstructural, mechanical and thermal properties of microwave sintered Cu–MWCNT nanocomposites,” J. of Alloys and Compounds, 822, 153675 (2020).CrossRef
25.
go back to reference L. Wang, L. Xu, C. Srinivasakannan, S. Koppala, Z. Han, and H. Xia, “Electroless copper plating of tungsten powders and preparation of WCu20 composites by microwave sintering,” J. of Alloys and Compounds, 764, 177–185 (2018).CrossRef L. Wang, L. Xu, C. Srinivasakannan, S. Koppala, Z. Han, and H. Xia, “Electroless copper plating of tungsten powders and preparation of WCu20 composites by microwave sintering,” J. of Alloys and Compounds, 764, 177–185 (2018).CrossRef
26.
go back to reference N. Vasudevan, N. Nihaar, N. Ahamed, B. Pavithra, A. Aravindhan, and B. P. Shanmugavel, “Effect of Ni addition on the densification of TiC: A comparative study of conventional and microwave sintering,” Int. J. of Refractory Metals & Hard Materials, 87, 105165 (2020).CrossRef N. Vasudevan, N. Nihaar, N. Ahamed, B. Pavithra, A. Aravindhan, and B. P. Shanmugavel, “Effect of Ni addition on the densification of TiC: A comparative study of conventional and microwave sintering,” Int. J. of Refractory Metals & Hard Materials, 87, 105165 (2020).CrossRef
27.
go back to reference C. Wei, X. Xu, B. Wei, J. Cheng, and P. Chen, “Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W–30Cu composites prepared by microwave sintering,” Diamond & Related Materials, 104, 107760 (2020).CrossRef C. Wei, X. Xu, B. Wei, J. Cheng, and P. Chen, “Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W–30Cu composites prepared by microwave sintering,” Diamond & Related Materials, 104, 107760 (2020).CrossRef
28.
go back to reference G. N. Felege, N. P. Gurao, and A. Upadhyaya, “Microstructure, microtexture and grain boundary character evolution in microwave sintered copper,” Materials Characterization, 157, 109921 (2019).CrossRef G. N. Felege, N. P. Gurao, and A. Upadhyaya, “Microstructure, microtexture and grain boundary character evolution in microwave sintered copper,” Materials Characterization, 157, 109921 (2019).CrossRef
29.
go back to reference B. Duan, Z. Zhang, D. Wang, and T. Zhou, “Microwave sintering of Mo nanopowder and its densification behavior,” Trans. Nonferrous Met. Soc. China, 29, 1705–1713 (2019).CrossRef B. Duan, Z. Zhang, D. Wang, and T. Zhou, “Microwave sintering of Mo nanopowder and its densification behavior,” Trans. Nonferrous Met. Soc. China, 29, 1705–1713 (2019).CrossRef
30.
go back to reference G. Chen, K. Li, Q. Jiang, X. Li, J. Peng, M. Omran, and J. Chen, “Microstructure and enhanced volume density properties of FeMn78C8.0 alloy prepared via a cleaner microwave sintering approach,” J. of Cleaner Production, 262, 121364 (2020).CrossRef G. Chen, K. Li, Q. Jiang, X. Li, J. Peng, M. Omran, and J. Chen, “Microstructure and enhanced volume density properties of FeMn78C8.0 alloy prepared via a cleaner microwave sintering approach,” J. of Cleaner Production, 262, 121364 (2020).CrossRef
31.
go back to reference S. Guo, X. Ye, L. Wang, S. Koppala, L. Yang, T. Hu, J. Gao, M. Hou, and L. Hu, “Fabrication of Cu based metallic binder for diamond tools by microwave pressureless sintering,” Materials, No. 11, 1453 (2018); DOI: https://doi.org/10.3390/ma11081453. S. Guo, X. Ye, L. Wang, S. Koppala, L. Yang, T. Hu, J. Gao, M. Hou, and L. Hu, “Fabrication of Cu based metallic binder for diamond tools by microwave pressureless sintering,” Materials, No. 11, 1453 (2018); DOI: https://​doi.​org/​10.​3390/​ma11081453.
32.
go back to reference L. Yang, L. Wang, J. Gao, S. Guo, X. Ye, S. Koppala, T. Hu, M. Hou, and L. Hu, “Optimization of process parameters for preparing metallic matrix diamond tool bits by microwave pressureless sintering using response surface methodology,” Materials, No. 11. 2185 (2018); DOI: https://doi.org/10.3390/ma11112185. L. Yang, L. Wang, J. Gao, S. Guo, X. Ye, S. Koppala, T. Hu, M. Hou, and L. Hu, “Optimization of process parameters for preparing metallic matrix diamond tool bits by microwave pressureless sintering using response surface methodology,” Materials, No. 11. 2185 (2018); DOI: https://​doi.​org/​10.​3390/​ma11112185.
34.
go back to reference S. Chandrasekaran, T. Basak, and S. Ramanathan, “Experimental and theoretical investigation on microwave melting of metals,” J. of Materials Processing Technology, No. 211, 482–487 (2011). S. Chandrasekaran, T. Basak, and S. Ramanathan, “Experimental and theoretical investigation on microwave melting of metals,” J. of Materials Processing Technology, No. 211, 482–487 (2011).
36.
go back to reference E. Ghasali, A. Pakseresht, F. Safari-kooshali, M. Agheli, and T. Ebadzadeh, “Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering,” Mater. Sci. & Eng. A., 627, 27–30 (2015).CrossRef E. Ghasali, A. Pakseresht, F. Safari-kooshali, M. Agheli, and T. Ebadzadeh, “Investigation on microstructure and mechanical behavior of Al–ZrB2 composite prepared by microwave and spark plasma sintering,” Mater. Sci. & Eng. A., 627, 27–30 (2015).CrossRef
38.
go back to reference M. Gupta and W.L.E. Wong, “Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering,” Scripta Materialia, No. 52, 479–483 (2005).CrossRef M. Gupta and W.L.E. Wong, “Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering,” Scripta Materialia, No. 52, 479–483 (2005).CrossRef
39.
go back to reference E. Ghasali, A. H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, and T. Ebadzadeh, “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering,” J. of Alloys and Compounds, 688, 527–533 (2016).CrossRef E. Ghasali, A. H. Pakseresht, M. Alizadeh, K. Shirvanimoghaddam, and T. Ebadzadeh, “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering,” J. of Alloys and Compounds, 688, 527–533 (2016).CrossRef
40.
go back to reference M. Hou, J. Gao, L. Yang, E. Ullah, T. Hu, S. Guo, L. Hu, and Y. Li, “The role of pre-alloyed powder combined with pressure-less microwave sintering on performance of superhard materials,” J. of Alloys and Compounds, 831, 154744 (2020).CrossRef M. Hou, J. Gao, L. Yang, E. Ullah, T. Hu, S. Guo, L. Hu, and Y. Li, “The role of pre-alloyed powder combined with pressure-less microwave sintering on performance of superhard materials,” J. of Alloys and Compounds, 831, 154744 (2020).CrossRef
41.
go back to reference E. Ghasali, M. Alizadeh, M. Niazmand, and T. Ebadzadeh, “Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering,” J. of Alloys and Compounds, 697, 200–207 (2017).CrossRef E. Ghasali, M. Alizadeh, M. Niazmand, and T. Ebadzadeh, “Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: Comparison between microwave and spark plasma sintering,” J. of Alloys and Compounds, 697, 200–207 (2017).CrossRef
43.
go back to reference R. M. Anklekar, K. Bauer, D. K. Agrawal, and R. Roy, “Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts,” Powder Metallurgy, 48, No. 1, 39–46 (2005). R. M. Anklekar, K. Bauer, D. K. Agrawal, and R. Roy, “Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts,” Powder Metallurgy, 48, No. 1, 39–46 (2005).
44.
go back to reference P. Chhillar, D. Agrawal, and J. H. Adair, “Sintering of molybdenum metal powder using microwave energy,” Powder Metallurgy, 51, No. 2, 182–187 (2008). P. Chhillar, D. Agrawal, and J. H. Adair, “Sintering of molybdenum metal powder using microwave energy,” Powder Metallurgy, 51, No. 2, 182–187 (2008).
45.
go back to reference E. Breval, J. P. Cheng, D. K. Agrawal, P. Gigl, M. Dennis, R. Roy, and A. J. Papworth, “Comparison between microwave and conventional sintering of WC/Co composites,” Mater. Sci. and Eng. A, 391, 285–295 (2005).CrossRef E. Breval, J. P. Cheng, D. K. Agrawal, P. Gigl, M. Dennis, R. Roy, and A. J. Papworth, “Comparison between microwave and conventional sintering of WC/Co composites,” Mater. Sci. and Eng. A, 391, 285–295 (2005).CrossRef
46.
go back to reference S. Zafar and A. K. Sharma, “Development and characterizations of WC-12Co microwave clad,” Materials Characterization, 96, 241–248 (2014).CrossRef S. Zafar and A. K. Sharma, “Development and characterizations of WC-12Co microwave clad,” Materials Characterization, 96, 241–248 (2014).CrossRef
47.
go back to reference D. Gupta, P. M. Bhovi, A. K. Sharma, and S. Dutta, “Development and characterization of microwave composite cladding,” J. of Manufacturing Processes, 14, 243–249 (2012).CrossRef D. Gupta, P. M. Bhovi, A. K. Sharma, and S. Dutta, “Development and characterization of microwave composite cladding,” J. of Manufacturing Processes, 14, 243–249 (2012).CrossRef
48.
go back to reference R. I. Badiger, S. Narendranath, and M. S. Srinath, “Joining of Inconel-625 alloy through microwave hybrid heating and its characterization,” J. of Manufacturing Processes, 18, 117–123 (2015).CrossRef R. I. Badiger, S. Narendranath, and M. S. Srinath, “Joining of Inconel-625 alloy through microwave hybrid heating and its characterization,” J. of Manufacturing Processes, 18, 117–123 (2015).CrossRef
49.
go back to reference A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave sintering of refractory metals/alloys: W, Mo, Re, W–Cu, W–Ni–Cu and W–Ni–Fe Alloys,” J. of Microwave Power and Electromagnetic Energy, 44 (1), 28-44 (2010).CrossRef A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave sintering of refractory metals/alloys: W, Mo, Re, W–Cu, W–Ni–Cu and W–Ni–Fe Alloys,” J. of Microwave Power and Electromagnetic Energy, 44 (1), 28-44 (2010).CrossRef
51.
go back to reference M. Salehi, S. Maleksaeedi, M. L. S. Nai, and M. Gupta, “Towards additive manufacturing of magnesium alloys through integration of binderless 3D-printing and rapid microwave sintering,” Additive Manufacturing, 29, 100790 (2019).CrossRef M. Salehi, S. Maleksaeedi, M. L. S. Nai, and M. Gupta, “Towards additive manufacturing of magnesium alloys through integration of binderless 3D-printing and rapid microwave sintering,” Additive Manufacturing, 29, 100790 (2019).CrossRef
52.
go back to reference A. Shelef and E. Jerby, “Incremental solidification (toward 3D-printing) of metal powders by transistor-based microwave applicator,” Materials & Design, 185, 108234 (2020).CrossRef A. Shelef and E. Jerby, “Incremental solidification (toward 3D-printing) of metal powders by transistor-based microwave applicator,” Materials & Design, 185, 108234 (2020).CrossRef
53.
go back to reference B. Vaidhyanathan, K. Annapoorani, and W. Rowlands, “Field assisted processing of 3D-printed ceramics,” in: ECI Symposium Series on Electric-Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities, Tomar, Portugal, March (2019). B. Vaidhyanathan, K. Annapoorani, and W. Rowlands, “Field assisted processing of 3D-printed ceramics,” in: ECI Symposium Series on Electric-Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities, Tomar, Portugal, March (2019).
54.
go back to reference E. N. Kablov. “Innovative developments of FSUE “VIAM” of the Russian Federation State science center on the implementation of “strategic directions for the development of materials and material processing technologies for a period until 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015); DOI: https://doi.org/10.18577/2071-9140-2015-0-1-3-33. E. N. Kablov. “Innovative developments of FSUE “VIAM” of the Russian Federation State science center on the implementation of “strategic directions for the development of materials and material processing technologies for a period until 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3–33 (2015); DOI: https://​doi.​org/​10.​18577/​2071-9140-2015-0-1-3-33.
55.
go back to reference E. N. Kablov, I. L. Svetlov, A. V. Neiman, P. G. Min, F. N. Karachevtsev, and M. I. Karpov, “High-temperature composites based on the Nb-Si system reinforced with niobium silicides,” Inorganic Materials: Applied Research, 8, No. 4, 609–617 (2017). E. N. Kablov, I. L. Svetlov, A. V. Neiman, P. G. Min, F. N. Karachevtsev, and M. I. Karpov, “High-temperature composites based on the Nb-Si system reinforced with niobium silicides,” Inorganic Materials: Applied Research, 8, No. 4, 609–617 (2017).
57.
go back to reference E. N. Kablov, “What will the future be made of? New generation materials, their creation and processing technologies – the basis of innovation,” Kryl’ya Rodiny, No. 5, 8–18 (2016). E. N. Kablov, “What will the future be made of? New generation materials, their creation and processing technologies – the basis of innovation,” Kryl’ya Rodiny, No. 5, 8–18 (2016).
59.
go back to reference N. N. Trofimenko, I. Yu. Yefimochkin, I. V. Osin, and R. M. Dvoretskov, “Study of the possibility of obtaining a high-entropy alloy VNbMoTaW by mixing elementary powders with subsequent compaction by hybrid spark plasma sintering,” Aviats. Mater. Tekhnol., No. 2 (55), 12–20 (2019); DOI: https://doi.org/10.18577/2071-9140-2019-0-2-12-20. N. N. Trofimenko, I. Yu. Yefimochkin, I. V. Osin, and R. M. Dvoretskov, “Study of the possibility of obtaining a high-entropy alloy VNbMoTaW by mixing elementary powders with subsequent compaction by hybrid spark plasma sintering,” Aviats. Mater. Tekhnol., No. 2 (55), 12–20 (2019); DOI: https://​doi.​org/​10.​18577/​2071-9140-2019-0-2-12-20.
Metadata
Title
Microwave Sintering of Metal Powder Materials (Review)
Authors
R. V. Batienkov
A. N. Bol’shakova
A. A. Khudnev
Publication date
01-02-2022
Publisher
Springer US
Published in
Metallurgist / Issue 9-10/2022
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01260-y

Other articles of this Issue 9-10/2022

Metallurgist 9-10/2022 Go to the issue

Premium Partners