Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 2/2018

20-06-2017 | Original Article

Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons

Authors: Axel Schmidt, Sébastien Lemaigre, Thorsten Ruf, Philippe Delfosse, Christoph Emmerling

Published in: Biomass Conversion and Biorefinery | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of perennial crops instead of maize as feedstock in biogas plants can be associated with multiple environmental and economic benefits. One promising species in this domain is the C4-grass Miscanthus × giganteus. The use of its biomass can mitigate carbon dioxide emissions by substitution of fossil fuels, sequestration of carbon in soils and reduced fertilizing. We compared Miscanthus from two different old fields (established 1995 and 2008) at three different harvest dates over 2 years. While the harvest in spring, like usual for combustion purposes, led to relatively low methane yields per hectare, the harvest in autumn, when the biomass is still green, exceeded the average methane yields per hectare of maize. The comparison of different old Miscanthus fields showed that there is no significant difference in terms of biomass yield, specific BMP and BMP per hectare. Only the influence of repeated autumn harvest showed differences in the methane production per hectare between both stand ages. The methane yield of the younger stand did not change considerable, while in the older stand, the productivity decreased about 15% after 1 year.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga P, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow C, Zwickel T, Minx JC (eds) Climate change 2014. Mitigation of climate change. Contribution of working group III to the fifth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga P, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Stechow C, Zwickel T, Minx JC (eds) Climate change 2014. Mitigation of climate change. Contribution of working group III to the fifth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY
2.
go back to reference European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, L140/16, Official J. Eur. Union European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC, L140/16, Official J. Eur. Union
3.
go back to reference Graebig M, Bringezu S, Fenner R (2010) Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis. Sol Energy 84:1255–1263CrossRef Graebig M, Bringezu S, Fenner R (2010) Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis. Sol Energy 84:1255–1263CrossRef
4.
go back to reference Herrmann A (2013) Biogas production from maize: current state, challenges and prospects. Agronomic and environmental aspects. Bioenergy Res 6:372–387CrossRef Herrmann A (2013) Biogas production from maize: current state, challenges and prospects. Agronomic and environmental aspects. Bioenergy Res 6:372–387CrossRef
5.
go back to reference Holland RA, Eigenbrod F, Muggeridge A, Brown G, Clarke D, Taylor G (2015) A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renew Sust Energ Rev 46:30–40CrossRef Holland RA, Eigenbrod F, Muggeridge A, Brown G, Clarke D, Taylor G (2015) A synthesis of the ecosystem services impact of second generation bioenergy crop production. Renew Sust Energ Rev 46:30–40CrossRef
6.
go back to reference Heaton E, Clifton-Brown JC, Voigt TB, Jones MB, Long SP (2004) Miscanthus for renewable energy generation: European Union experience and projection for Illinois. Mitig Adapt Strateg Glob Chang 9:433–451CrossRef Heaton E, Clifton-Brown JC, Voigt TB, Jones MB, Long SP (2004) Miscanthus for renewable energy generation: European Union experience and projection for Illinois. Mitig Adapt Strateg Glob Chang 9:433–451CrossRef
7.
go back to reference Dohleman F, Long S (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115CrossRef Dohleman F, Long S (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115CrossRef
8.
go back to reference Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30CrossRef Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30CrossRef
9.
go back to reference Mayer F, Gerin PA, Noo A, Lemaigre S, Stilmant D, Schmit T, Leclech N, Ruelle L, Gennen J, von Francken-Welz H, Foucart G, Flammang J, Weyland M, Delfosse P (2014) Assessment of energy crops alternative to maize for biogas production in the greater region. Bioresour Technol 166:358–367CrossRef Mayer F, Gerin PA, Noo A, Lemaigre S, Stilmant D, Schmit T, Leclech N, Ruelle L, Gennen J, von Francken-Welz H, Foucart G, Flammang J, Weyland M, Delfosse P (2014) Assessment of energy crops alternative to maize for biogas production in the greater region. Bioresour Technol 166:358–367CrossRef
10.
go back to reference Schorling M, Enders C, Voigt CA (2015) Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy 7:763–773CrossRef Schorling M, Enders C, Voigt CA (2015) Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy 7:763–773CrossRef
11.
go back to reference Semere T, Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:30–39CrossRef Semere T, Slater FM (2007) Invertebrate populations in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy 31:30–39CrossRef
12.
go back to reference Felten D, Emmerling C (2011) Effects of bioenergy crop cultivation on earthworm communities – a comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl Soil Ecol 49:167–177CrossRef Felten D, Emmerling C (2011) Effects of bioenergy crop cultivation on earthworm communities – a comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl Soil Ecol 49:167–177CrossRef
13.
go back to reference Felten D, Fröba N, Fries J, Emmerling C (2013) Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus; rapeseed and maize) based on farming conditions in western Germany. Renew Energy 55:160–174CrossRef Felten D, Fröba N, Fries J, Emmerling C (2013) Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus; rapeseed and maize) based on farming conditions in western Germany. Renew Energy 55:160–174CrossRef
14.
go back to reference Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop Miscanthus. Glob Chang Biol 13:2296–2307CrossRef Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop Miscanthus. Glob Chang Biol 13:2296–2307CrossRef
15.
go back to reference Hastings A, Clifton-Brown JC, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009) Future energy potential of Miscanthus in Europe. GCB Bioenergy 1:180–196CrossRef Hastings A, Clifton-Brown JC, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009) Future energy potential of Miscanthus in Europe. GCB Bioenergy 1:180–196CrossRef
16.
go back to reference Foereid B, de Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36:1075–1085CrossRef Foereid B, de Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36:1075–1085CrossRef
17.
go back to reference Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRef Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327CrossRef
18.
go back to reference Cadoux S, Riche AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22CrossRef Cadoux S, Riche AB, Yates NE, Machet JM (2012) Nutrient requirements of Miscanthus × giganteus: conclusions from a review of published studies. Biomass Bioenergy 38:14–22CrossRef
19.
go back to reference Neukirchen D, Himken M, Lammel D, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309CrossRef Neukirchen D, Himken M, Lammel D, Czypionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309CrossRef
20.
go back to reference Himken M, Lammel D, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126CrossRef Himken M, Lammel D, Neukirchen D, Czypionka-Krause U, Olfs HW (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126CrossRef
21.
go back to reference Klimiuk E, Tomasz P, Wojciech B, Bogdan D (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101:9527–9535CrossRef Klimiuk E, Tomasz P, Wojciech B, Bogdan D (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol 101:9527–9535CrossRef
22.
go back to reference Kazimierowicz J, Dzienis L (2015) Giant Miscanthus as a substrate for biogas production. J Ecol Eng 16:139–142CrossRef Kazimierowicz J, Dzienis L (2015) Giant Miscanthus as a substrate for biogas production. J Ecol Eng 16:139–142CrossRef
23.
go back to reference Schittenhelm S (2008) Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur J Agron 29:72–79CrossRef Schittenhelm S (2008) Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur J Agron 29:72–79CrossRef
24.
go back to reference Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN, Ahring BK (2008) Energy balance and cost-benefit analysis of biogas production from perennial crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–1847CrossRef Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN, Ahring BK (2008) Energy balance and cost-benefit analysis of biogas production from perennial crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–1847CrossRef
25.
go back to reference Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Springer, HeidelbergCrossRef Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse. Springer, HeidelbergCrossRef
26.
go back to reference Menardo S, Bauer A, Theuretzbacher F, Piringer G, Nilsen PJ, Balsari P, Pavliska O, Amon T (2012) Biogas production from steam-exploded Miscanthus and utilization of biogas energy and CO2 in greenhouses. Bioenergy Res 6:620–630CrossRef Menardo S, Bauer A, Theuretzbacher F, Piringer G, Nilsen PJ, Balsari P, Pavliska O, Amon T (2012) Biogas production from steam-exploded Miscanthus and utilization of biogas energy and CO2 in greenhouses. Bioenergy Res 6:620–630CrossRef
27.
go back to reference Kiesel A, Lewandowski I (2015) Miscanthus as biogas substrate - cutting tolerance and potential for anaerobic digestion. GCB Bioenergy. doi:10.1111/gcbb.12330 Kiesel A, Lewandowski I (2015) Miscanthus as biogas substrate - cutting tolerance and potential for anaerobic digestion. GCB Bioenergy. doi:10.​1111/​gcbb.​12330
28.
go back to reference Wahid R, Nielsen SF, Hernandez VM, Ward AJ, Gislum R, Jørgensen U, Møller HB (2015) Methane production potential from Miscanthus sp.: effect of harvesting time, genotypes and plant fractions. Biosyst Eng 133:71–80CrossRef Wahid R, Nielsen SF, Hernandez VM, Ward AJ, Gislum R, Jørgensen U, Møller HB (2015) Methane production potential from Miscanthus sp.: effect of harvesting time, genotypes and plant fractions. Biosyst Eng 133:71–80CrossRef
31.
go back to reference Knörzer H, Hartung K, Piepho HP, Lewandowski I (2013) Assessment of variability in biomass yield and quality: what is an adequate size of sampling area for Miscanthus? GCB Bioenergy. doi:10.1111/gcbb.12027 Knörzer H, Hartung K, Piepho HP, Lewandowski I (2013) Assessment of variability in biomass yield and quality: what is an adequate size of sampling area for Miscanthus? GCB Bioenergy. doi:10.​1111/​gcbb.​12027
32.
go back to reference Porter MG, Murray RS (2001) The volatility of components of grass silage on oven drying an the inter-relationship between dry-matter content estimated by different analytical. Grass Forage Sci 56:405–411CrossRef Porter MG, Murray RS (2001) The volatility of components of grass silage on oven drying an the inter-relationship between dry-matter content estimated by different analytical. Grass Forage Sci 56:405–411CrossRef
33.
go back to reference Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44CrossRef Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44CrossRef
34.
go back to reference Verein Deutscher Ingenieure (2006) VDI 4630 Fermentation of organic material. Characterization of the substrate, sampling, collection of material data, fermentation tests Verein Deutscher Ingenieure (2006) VDI 4630 Fermentation of organic material. Characterization of the substrate, sampling, collection of material data, fermentation tests
35.
go back to reference Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098CrossRef Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098CrossRef
36.
go back to reference Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121:47–55CrossRef Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121:47–55CrossRef
37.
go back to reference Purdy SJ, Cunniff J, Maddison AL, Jones LE, Barraclough T, Castle M, Davey LC, Jones CM, Shield I, Gallagher J, Donnison I, Clifton-Brown J (2015) Seasonal carbohydrate dynamics and climate regulation of senescence in the perennial grass, Miscanthus. Bioenergy Res 8:28–41CrossRef Purdy SJ, Cunniff J, Maddison AL, Jones LE, Barraclough T, Castle M, Davey LC, Jones CM, Shield I, Gallagher J, Donnison I, Clifton-Brown J (2015) Seasonal carbohydrate dynamics and climate regulation of senescence in the perennial grass, Miscanthus. Bioenergy Res 8:28–41CrossRef
38.
go back to reference Lienen T, Kleyböcker A, Brehmer M, Kraume M, Moeller L, Görsch K, Würdemann H (2013) Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy Sustain Soc 3:20CrossRef Lienen T, Kleyböcker A, Brehmer M, Kraume M, Moeller L, Görsch K, Würdemann H (2013) Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy Sustain Soc 3:20CrossRef
39.
go back to reference Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) European experience with a novel energy crop. Biomass Bioenergy 19:209–277CrossRef Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) European experience with a novel energy crop. Biomass Bioenergy 19:209–277CrossRef
Metadata
Title
Miscanthus as biogas feedstock: influence of harvest time and stand age on the biochemical methane potential (BMP) of two different growing seasons
Authors
Axel Schmidt
Sébastien Lemaigre
Thorsten Ruf
Philippe Delfosse
Christoph Emmerling
Publication date
20-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 2/2018
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0274-6

Other articles of this Issue 2/2018

Biomass Conversion and Biorefinery 2/2018 Go to the issue