Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 2/2018

06-06-2017 | Review Article

Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review

Authors: Karthik Rajendran, Edward Drielak, V. Sudarshan Varma, Shanmugaprakash Muthusamy, Gopalakrishnan Kumar

Published in: Biomass Conversion and Biorefinery | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulosic biomass is the most abundant renewable energy bioresources available today. Due to its recalcitrant structure, lignocellulosic feedstocks cannot be directly converted into fermentable sugars. Thus, an additional step known as the pretreatment is needed for efficient enzyme hydrolysis for the release of sugars. Various pretreatment technologies have been developed and examined for different biomass feedstocks. One of the major concerns of pretreatments is the degradation of sugars and formation of inhibitors during pretreatment. The inhibitor formation affects in the following steps after pretreatments such as enzymatic hydrolysis and fermentation for the release of different bioenergy products. The sugar degradation and formation of inhibitors depend on the types and conditions of pretreatment and types of biomass. This review covers the structure of lignocellulose, followed by the factors affecting pretreatment and challenges of pretreatment. This review further discusses diverse types of pretreatment technologies and different applications of pretreatment for producing biogas, biohydrogen, ethanol, and butanol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef
2.
go back to reference Zhang Y-HP, Ding S-Y, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRef Zhang Y-HP, Ding S-Y, Mielenz JR, Cui J-B, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97:214–223CrossRef
3.
go back to reference Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815CrossRef Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815CrossRef
4.
go back to reference Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126CrossRef Gall DL, Ralph J, Donohue TJ, Noguera DR (2017) Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Curr Opin Biotechnol 45:120–126CrossRef
5.
go back to reference Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6, 465–482. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6, 465–482.
6.
go back to reference Himmel ME, (ed) (2009) Biomass recalcitrance, Blackwell Himmel ME, (ed) (2009) Biomass recalcitrance, Blackwell
7.
go back to reference Taherzadeh MJ, Jeihanipour A (2012) Recalcitrance of lignocellulosic biomass to anaerobic digestion. Biogas production: pretreatment methods in anaerobic digestion, 27–54 Taherzadeh MJ, Jeihanipour A (2012) Recalcitrance of lignocellulosic biomass to anaerobic digestion. Biogas production: pretreatment methods in anaerobic digestion, 27–54
8.
go back to reference Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211 Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211
9.
go back to reference Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRef
10.
go back to reference Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40CrossRef
11.
go back to reference Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRef Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRef
12.
go back to reference Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501 Zabed H, Sahu J, Suely A, Boyce A, Faruq G (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501
13.
go back to reference Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803CrossRef Gharehkhani S, Sadeghinezhad E, Kazi SN, Yarmand H, Badarudin A, Safaei MR, Zubir MNM (2015) Basic effects of pulp refining on fiber properties—a review. Carbohydr Polym 115:785–803CrossRef
14.
go back to reference Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry 2:48–53CrossRef Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Current Opinion in Green and Sustainable Chemistry 2:48–53CrossRef
15.
go back to reference Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRef Burton RA, Fincher GB (2014) Plant cell wall engineering: applications in biofuel production and improved human health. Curr Opin Biotechnol 26:79–84CrossRef
16.
go back to reference Ding SY, Himmel ME (2009) Anatomy and ultrastructure of maize cell walls: an example of energy plants. Biomass Recalcitrance:38–60 Ding SY, Himmel ME (2009) Anatomy and ultrastructure of maize cell walls: an example of energy plants. Biomass Recalcitrance:38–60
17.
go back to reference Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158CrossRef Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158CrossRef
18.
go back to reference Aslanzadeh S, Rajendran K, Taherzadeh MJ (2013) Pretreatment of lignocelluloses for biogas and ethanol processes. 125–150 Aslanzadeh S, Rajendran K, Taherzadeh MJ (2013) Pretreatment of lignocelluloses for biogas and ethanol processes. 125–150
19.
go back to reference Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. Bioprocessing of Renewable Resources to Commodity Bioproducts, 43–75 Rajendran K, Taherzadeh MJ (2014) Pretreatment of lignocellulosic materials. Bioprocessing of Renewable Resources to Commodity Bioproducts, 43–75
20.
go back to reference Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199CrossRef Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199CrossRef
21.
go back to reference Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203CrossRef
22.
go back to reference Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci, Part A: Polym Chem 42:487–495CrossRef Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci, Part A: Polym Chem 42:487–495CrossRef
23.
go back to reference Kontturi EJ (2005) Surface chemistry of cellulose: from natural fibres to model surfaces. Technische Universiteit, Eindhoven Kontturi EJ (2005) Surface chemistry of cellulose: from natural fibres to model surfaces. Technische Universiteit, Eindhoven
24.
go back to reference Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
25.
go back to reference Gross AS, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRef Gross AS, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRef
26.
go back to reference Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220CrossRef Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220CrossRef
27.
go back to reference Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65CrossRef Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2:65CrossRef
28.
go back to reference Yoo C, Pan X (2016) Pretreatment of Lignocellulosic Feedstocks. In: Li Y, Khanal SK (eds) Bioenergy: principles and applications. Wiley-Blackwell, Hoboken Yoo C, Pan X (2016) Pretreatment of Lignocellulosic Feedstocks. In: Li Y, Khanal SK (eds) Bioenergy: principles and applications. Wiley-Blackwell, Hoboken
29.
go back to reference Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef
30.
go back to reference Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568 Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568
31.
go back to reference Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRef
32.
go back to reference Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRef Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93CrossRef
33.
go back to reference Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738 Taherzadeh MJ, Karimi K (2007) Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738
34.
go back to reference Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550CrossRef Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550CrossRef
35.
go back to reference Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231CrossRef Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231CrossRef
36.
go back to reference Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR (2007) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 97:265–278CrossRef Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR (2007) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 97:265–278CrossRef
37.
go back to reference Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209CrossRef Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209CrossRef
38.
go back to reference Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275CrossRef Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275CrossRef
39.
go back to reference Choi CH, Oh KK (2012) Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresour Technol 110:349–354CrossRef Choi CH, Oh KK (2012) Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw. Bioresour Technol 110:349–354CrossRef
40.
go back to reference Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRef
41.
go back to reference Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels. Springer Berlin, Heidelberg, pp 41–65 Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In Biofuels. Springer Berlin, Heidelberg, pp 41–65
42.
go back to reference Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579CrossRef Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Biorefin 6:561–579CrossRef
43.
go back to reference Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3:199–208CrossRef Kumakura M, Kaetsu I (1983) Effect of radiation pretreatment of bagasse on enzymatic and acid hydrolysis. Biomass 3:199–208CrossRef
44.
go back to reference Kumakura M, Kaetsu I (1984) Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose. Agricultural wastes 9:279–287CrossRef Kumakura M, Kaetsu I (1984) Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose. Agricultural wastes 9:279–287CrossRef
45.
go back to reference Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Biofuels: Methods and Protocols, 61–77 Balan V, Bals B, Chundawat SP, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. Biofuels: Methods and Protocols, 61–77
46.
go back to reference Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for biofuels 4:27CrossRef Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for biofuels 4:27CrossRef
47.
go back to reference Lavarack B, Griffin G, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380CrossRef Lavarack B, Griffin G, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380CrossRef
48.
go back to reference Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
49.
go back to reference Sierra R, Granda CB, Holtzapple MT (2009) Lime pretreatment. Methods in Molecular Biology: Biofuels 581:115–124CrossRef Sierra R, Granda CB, Holtzapple MT (2009) Lime pretreatment. Methods in Molecular Biology: Biofuels 581:115–124CrossRef
50.
go back to reference Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, (ed C. E. Wyman), John Wiley & Sons, Ltd, Chichester, UK, 201–222. Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, (ed C. E. Wyman), John Wiley & Sons, Ltd, Chichester, UK, 201–222.
51.
go back to reference Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456CrossRef Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour Technol 152:450–456CrossRef
52.
go back to reference Contreras QH, Nagieb Z, Sanjuán DR (1997) Delignification of bagasse with acetic acid and ozone. Part 1. Acetic acid pulping. Polym-Plast Technol Eng 36:297–307CrossRef Contreras QH, Nagieb Z, Sanjuán DR (1997) Delignification of bagasse with acetic acid and ozone. Part 1. Acetic acid pulping. Polym-Plast Technol Eng 36:297–307CrossRef
53.
go back to reference Vila C, Santos V, Parajó JC (2000) Optimization of beech wood pulping in catalyzed acetic acid media. Can J Chem Eng 78:964–973CrossRef Vila C, Santos V, Parajó JC (2000) Optimization of beech wood pulping in catalyzed acetic acid media. Can J Chem Eng 78:964–973CrossRef
54.
go back to reference Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw. Ind Crop Prod 14:139–144CrossRef Lam HQ, Le Bigot Y, Delmas M, Avignon G (2001) A new procedure for the destructuring of vegetable matter at atmospheric pressure by a catalyst/solvent system of formic acid/acetic acid. Applied to the pulping of triticale straw. Ind Crop Prod 14:139–144CrossRef
55.
go back to reference Sun XF, Sun R, Tomkinson J, Baird M (2004) Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polym Degrad Stab 83:47–57CrossRef Sun XF, Sun R, Tomkinson J, Baird M (2004) Degradation of wheat straw lignin and hemicellulosic polymers by a totally chlorine-free method. Polym Degrad Stab 83:47–57CrossRef
56.
go back to reference Pan X, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263CrossRef Pan X, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresour Technol 96:1256–1263CrossRef
57.
go back to reference Saad M, Oliveira L, Cândido R, Quintana G, Rocha G, Gonçalves A (2008) Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzym Microb Technol 43:220–225CrossRef Saad M, Oliveira L, Cândido R, Quintana G, Rocha G, Gonçalves A (2008) Preliminary studies on fungal treatment of sugarcane straw for organosolv pulping. Enzym Microb Technol 43:220–225CrossRef
58.
go back to reference Abad S, Santos V, Parajó J (2000) Formic acid-peroxyformic acid pulping of aspen wood: an optimization study. Holzforschung 54:544–552CrossRef Abad S, Santos V, Parajó J (2000) Formic acid-peroxyformic acid pulping of aspen wood: an optimization study. Holzforschung 54:544–552CrossRef
59.
go back to reference Lam HQ, Le Bigot Y, Delmas M (2001) Formic acid pulping of rice straw. Ind Crop Prod 14:65–71CrossRef Lam HQ, Le Bigot Y, Delmas M (2001) Formic acid pulping of rice straw. Ind Crop Prod 14:65–71CrossRef
60.
go back to reference Jahan MS (2006) Formic acid pulping of bagasse. Bangladesh Journal of Scientific and Industrial Research 41:245–250 Jahan MS (2006) Formic acid pulping of bagasse. Bangladesh Journal of Scientific and Industrial Research 41:245–250
61.
go back to reference Ligero P, Villaverde J, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99:5687–5693CrossRef Ligero P, Villaverde J, Vega A, Bao M (2008) Pulping cardoon (Cynara cardunculus) with peroxyformic acid (MILOX) in one single stage. Bioresour Technol 99:5687–5693CrossRef
62.
go back to reference Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl Biochem Biotechnol 162:2313–2323CrossRef Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A (2010) Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Appl Biochem Biotechnol 162:2313–2323CrossRef
63.
go back to reference Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532CrossRef Zhang M, Qi W, Liu R, Su R, Wu S, He Z (2010) Fractionating lignocellulose by formic acid: characterization of major components. Biomass Bioenergy 34:525–532CrossRef
64.
go back to reference Wang K, Bauer S, R-c S (2011) Structural transformation of Miscanthus× giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152CrossRef Wang K, Bauer S, R-c S (2011) Structural transformation of Miscanthus× giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. J Agric Food Chem 60:144–152CrossRef
65.
go back to reference Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107:67–73CrossRef Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107:67–73CrossRef
66.
go back to reference Qin L, Liu Z-H, Li B-Z, Dale BE, Yuan Y-J (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326CrossRef Qin L, Liu Z-H, Li B-Z, Dale BE, Yuan Y-J (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326CrossRef
67.
go back to reference Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef
68.
go back to reference Huijgen WJJ, Smit AT, Reith JH, Hd U (2011) Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J Chem Technol Biotechnol 86:1428–1438CrossRef Huijgen WJJ, Smit AT, Reith JH, Hd U (2011) Catalytic organosolv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. J Chem Technol Biotechnol 86:1428–1438CrossRef
69.
go back to reference Janesko BG (2011) Modeling interactions between lignocellulose and ionic liquids using DFT-D. PCCP 13:11393–11401CrossRef Janesko BG (2011) Modeling interactions between lignocellulose and ionic liquids using DFT-D. PCCP 13:11393–11401CrossRef
70.
go back to reference Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875CrossRef Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS (2011) Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Biotechnol Bioeng 108:2865–2875CrossRef
71.
go back to reference Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRef Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRef
72.
go back to reference Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506CrossRef Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506CrossRef
73.
go back to reference Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRef Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025CrossRef
74.
go back to reference Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259 Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259
75.
go back to reference Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRef Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112CrossRef
76.
go back to reference Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159CrossRef Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159CrossRef
77.
go back to reference Danon B, Van der Aa L, De Jong W (2013) Furfural degradation in a dilute acidic and saline solution in the presence of glucose. Carbohydr Res 375:145–152CrossRef Danon B, Van der Aa L, De Jong W (2013) Furfural degradation in a dilute acidic and saline solution in the presence of glucose. Carbohydr Res 375:145–152CrossRef
78.
go back to reference Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRef Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRef
79.
go back to reference Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172CrossRef Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172CrossRef
80.
go back to reference Sompong O, Boe K, Angelidaki I (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654CrossRef Sompong O, Boe K, Angelidaki I (2012) Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Appl Energy 93:648–654CrossRef
81.
go back to reference Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production-a review. Biofuel Research Journal 3:394–402CrossRef Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production-a review. Biofuel Research Journal 3:394–402CrossRef
82.
go back to reference Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PA, Koukios EG (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102:521–528CrossRef Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PA, Koukios EG (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102:521–528CrossRef
83.
go back to reference Kumar G, Bakonyi P, Periyasamy S, Kim S, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737CrossRef Kumar G, Bakonyi P, Periyasamy S, Kim S, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev 44:728–737CrossRef
84.
go back to reference De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for biofuels 2:12CrossRef De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for biofuels 2:12CrossRef
85.
go back to reference Cao G, Ren N, Wang A, Lee D-J, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188CrossRef Cao G, Ren N, Wang A, Lee D-J, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 34:7182–7188CrossRef
86.
go back to reference Ren N-Q, Cao G-L, Guo W-Q, Wang A-J, Zhu Y-H, Liu B-f XJ-F (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712CrossRef Ren N-Q, Cao G-L, Guo W-Q, Wang A-J, Zhu Y-H, Liu B-f XJ-F (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712CrossRef
87.
go back to reference C-z L, Cheng X-y (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952CrossRef C-z L, Cheng X-y (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int J Hydrog Energy 35:8945–8952CrossRef
88.
go back to reference Datar R, Huang J, Maness P-C, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939CrossRef Datar R, Huang J, Maness P-C, Mohagheghi A, Czernik S, Chornet E (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrog Energy 32:932–939CrossRef
89.
go back to reference Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35:2663–2669CrossRef Pan C, Zhang S, Fan Y, Hou H (2010) Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrog Energy 35:2663–2669CrossRef
90.
go back to reference Wang Y, Wang H, Feng X, Wang X, Huang J (2010) Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. Int J Hydrog Energy 35:3092–3099CrossRef Wang Y, Wang H, Feng X, Wang X, Huang J (2010) Biohydrogen production from cornstalk wastes by anaerobic fermentation with activated sludge. Int J Hydrog Energy 35:3092–3099CrossRef
91.
go back to reference Ma S, Wang H, Wang Y, Bu H, Bai J (2011) Bio-hydrogen production from cornstalk wastes by orthogonal design method. Renew Energy 36:709–713CrossRef Ma S, Wang H, Wang Y, Bu H, Bai J (2011) Bio-hydrogen production from cornstalk wastes by orthogonal design method. Renew Energy 36:709–713CrossRef
92.
go back to reference Pan C-M, Ma H-C, Fan Y-T, Hou H-W (2011) Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int J Hydrog Energy 36:4852–4862CrossRef Pan C-M, Ma H-C, Fan Y-T, Hou H-W (2011) Bioaugmented cellulosic hydrogen production from cornstalk by integrating dilute acid-enzyme hydrolysis and dark fermentation. Int J Hydrog Energy 36:4852–4862CrossRef
93.
go back to reference Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRef Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenergy 31:250–254CrossRef
94.
go back to reference Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35CrossRef
95.
go back to reference Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Research Journal 3:347–356CrossRef Kumar R, Tabatabaei M, Karimi K, Sárvári Horváth I (2016) Recent updates on lignocellulosic biomass derived ethanol-a review. Biofuel Research Journal 3:347–356CrossRef
96.
go back to reference Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453CrossRef Brethauer S, Studer MH (2014) Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci 7:1446–1453CrossRef
97.
go back to reference Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRef Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78CrossRef
98.
go back to reference Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208CrossRef Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208CrossRef
99.
go back to reference Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRef Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRef
100.
go back to reference Qureshi N, Bowman M, Saha B, Hector R, Berhow M, Cotta M (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540CrossRef Qureshi N, Bowman M, Saha B, Hector R, Berhow M, Cotta M (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90:533–540CrossRef
101.
go back to reference Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRef Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRef
102.
go back to reference Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110–115CrossRef Gao K, Rehmann L (2014) ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass Bioenergy 66:110–115CrossRef
103.
go back to reference Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204CrossRef Kumar M, Goyal Y, Sarkar A, Gayen K (2012) Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl Energy 93:193–204CrossRef
104.
go back to reference Karimi K, Tabatabaei M, Sárvári Horváth I, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Research Journal 2:301–308CrossRef Karimi K, Tabatabaei M, Sárvári Horváth I, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Research Journal 2:301–308CrossRef
Metadata
Title
Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production–a review
Authors
Karthik Rajendran
Edward Drielak
V. Sudarshan Varma
Shanmugaprakash Muthusamy
Gopalakrishnan Kumar
Publication date
06-06-2017
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 2/2018
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-017-0269-3

Other articles of this Issue 2/2018

Biomass Conversion and Biorefinery 2/2018 Go to the issue