Skip to main content
Top
Published in: Journal of Computational Electronics 2/2016

17-03-2016

Modeling and simulation of graphene-oxide-based RRAM

Authors: Ee Wah Lim, Mohammad Taghi Ahmadi, Razali Ismail

Published in: Journal of Computational Electronics | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose a conduction model for resistive random-access memory (RRAM) based on graphene oxide (GO). We associate the electron transport mechanism with a multiphonon trap-assisted tunneling (MTAT) model. Pristine GO is electrically insulating due to the presence of \(sp^{3}\)-hybridized oxygen functional groups, e.g., hydroxyl, epoxide, carbonyl, and carboxyl groups. Electrically driven reduction of these oxygen groups triggers formation of nanoscale \(sp^{2}\) islands across the oxide layers. These graphene-like islands act as intermediate trap sites and assist electrons to tunnel from the cathode toward the anode despite being isolated by the disordered \(sp^{3}\)-bonded matrix. The presence of vertically aligned trap sites leads to the formation of percolation paths that allow a steady flow of electrons. The resistance state of the RRAM device can then be reversibly switched by electrically modulating the concentration of \(sp^{2}\) islands. This model shows good agreement with experimental data; therefore, we regard MTAT as an admissible explanation for the conduction mechanism in GO-based RRAM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, L., Yang, C.-H., Wen, J.: Physical principles and current status of emerging non-volatile solid state memories. Electron. Mater. Lett. 11, 505–543 (2015)CrossRef Wang, L., Yang, C.-H., Wen, J.: Physical principles and current status of emerging non-volatile solid state memories. Electron. Mater. Lett. 11, 505–543 (2015)CrossRef
2.
go back to reference Meena, J.S., Sze, S.M., Chand, U., Tseng, T.-Y.: Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014)CrossRef Meena, J.S., Sze, S.M., Chand, U., Tseng, T.-Y.: Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 9, 526 (2014)CrossRef
3.
go back to reference Choi, B.J., Torrezan, A.C., Norris, K.J., Miao, F., Strachan, J.P., Zhang, M.-X., Ohlberg, D.A.A., Kobayashi, N.P., Yang, J.J., Williams, R.S.: Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch. Nano Lett. 13, 3213–3217 (2013)CrossRef Choi, B.J., Torrezan, A.C., Norris, K.J., Miao, F., Strachan, J.P., Zhang, M.-X., Ohlberg, D.A.A., Kobayashi, N.P., Yang, J.J., Williams, R.S.: Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch. Nano Lett. 13, 3213–3217 (2013)CrossRef
4.
go back to reference Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater 10, 625–630 (2011)CrossRef Lee, M.-J., Lee, C.B., Lee, D., Lee, S.R., Chang, M., Hur, J.H., Kim, Y.-B., Kim, C.-J., Seo, D.H., Seo, S., Chung, U.-I., Yoo, I.-K., Kim, K.: A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater 10, 625–630 (2011)CrossRef
5.
go back to reference Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, a., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. 2008 IEEE Int. Electron Devices Meet. (2008) Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, a., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. 2008 IEEE Int. Electron Devices Meet. (2008)
6.
go back to reference Chien, W.C., Chen, Y.C., Lee, F.M., Lin, Y.Y., Lai, E.K., Yao, Y.D., Gong, J., Horng, S.F., Yeh, C.W., Tsai, S.C., Lee, C.H., Huang, Y.K., Chen, C.F., Kao, H.F., Shih, Y.H., Hsieh, K.Y., Lu, C.Y.: A novel Ni/WOX/W resistive random access memory with excellent retention and low switching current. Jpn. J. Appl. Phys. 50, 04DD11–1–04DD11–5 (2011)CrossRef Chien, W.C., Chen, Y.C., Lee, F.M., Lin, Y.Y., Lai, E.K., Yao, Y.D., Gong, J., Horng, S.F., Yeh, C.W., Tsai, S.C., Lee, C.H., Huang, Y.K., Chen, C.F., Kao, H.F., Shih, Y.H., Hsieh, K.Y., Lu, C.Y.: A novel Ni/WOX/W resistive random access memory with excellent retention and low switching current. Jpn. J. Appl. Phys. 50, 04DD11–1–04DD11–5 (2011)CrossRef
7.
go back to reference Wang, X.P., Fang, Z., Li, X., Chen, B., Gao, B., Kang, J.F., Chen, Z.X., Kamath, a, Shen, N.S., Singh, N., Lo, G.Q., Kwong, D.L.: Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation. Tech. Dig. - Int. Electron Devices Meet. IEDM 6, 493–496 (2012) Wang, X.P., Fang, Z., Li, X., Chen, B., Gao, B., Kang, J.F., Chen, Z.X., Kamath, a, Shen, N.S., Singh, N., Lo, G.Q., Kwong, D.L.: Highly compact 1T-1R architecture (4F2 footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation. Tech. Dig. - Int. Electron Devices Meet. IEDM 6, 493–496 (2012)
8.
go back to reference Meng, Y., Xue, X.Y., Song, Y.L., Yang, J.G., Chen, Ba, Lin, Y.Y., Zou, Q.T., Huang, R., Wu, J.G.: Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement. 122109, 42–43 (2014) Meng, Y., Xue, X.Y., Song, Y.L., Yang, J.G., Chen, Ba, Lin, Y.Y., Zou, Q.T., Huang, R., Wu, J.G.: Fast Step-Down Set Algorithm of Resistive Switching Memory with Low Programming Energy and Significant Reliability Improvement. 122109, 42–43 (2014)
9.
go back to reference Lee, S., Sohn, J., Chen, H., Wong, H.P.: Metal Oxide Resistive Memory using Graphene Edge Electrode. arXiv Prepr. arXiv:1502.02675 (2015) Lee, S., Sohn, J., Chen, H., Wong, H.P.: Metal Oxide Resistive Memory using Graphene Edge Electrode. arXiv Prepr. arXiv:​1502.​02675 (2015)
10.
go back to reference Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)CrossRefMATH Chua, L.: Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)CrossRefMATH
11.
go back to reference Huang, R., Cai, Y., Liu, Y., Bai, W., Kuang, Y., Wang, Y.: Resistive Switching in Organic Memory Devices for Flexible Applications. pp. 838–841 (2014) Huang, R., Cai, Y., Liu, Y., Bai, W., Kuang, Y., Wang, Y.: Resistive Switching in Organic Memory Devices for Flexible Applications. pp. 838–841 (2014)
12.
go back to reference Sharma, Y., Misra, P., Katiyar, R.S.: Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Appl. Phys. 116, 084505 (2014)CrossRef Sharma, Y., Misra, P., Katiyar, R.S.: Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Appl. Phys. 116, 084505 (2014)CrossRef
13.
go back to reference Gale, E.: TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014)CrossRef Gale, E.: TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29, 104004 (2014)CrossRef
14.
go back to reference Zhao, X., Xu, H., Wang, Z., Zhang, L., Ma, J., Liu, Y.: Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon N. Y. 91, 38–44 (2015)CrossRef Zhao, X., Xu, H., Wang, Z., Zhang, L., Ma, J., Liu, Y.: Nonvolatile/volatile behaviors and quantized conductance observed in resistive switching memory based on amorphous carbon. Carbon N. Y. 91, 38–44 (2015)CrossRef
15.
go back to reference Lim, E.W., Ismail, R.: Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 4, 586–613 (2015)CrossRef Lim, E.W., Ismail, R.: Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 4, 586–613 (2015)CrossRef
16.
go back to reference Wang, L.H., Yang, W., Sun, Q.Q., Zhou, P., Lu, H.L., Ding, S.J., Wei Zhang, D.: The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 100, 3–7 (2012) Wang, L.H., Yang, W., Sun, Q.Q., Zhou, P., Lu, H.L., Ding, S.J., Wei Zhang, D.: The mechanism of the asymmetric SET and RESET speed of graphene oxide based flexible resistive switching memories. Appl. Phys. Lett. 100, 3–7 (2012)
17.
go back to reference Hermann, M., Schenk, A.: Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: Measurements and modeling. J. Appl. Phys. 77, 4522–4540 (1995)CrossRef Hermann, M., Schenk, A.: Field and high-temperature dependence of the long term charge loss in erasable programmable read only memories: Measurements and modeling. J. Appl. Phys. 77, 4522–4540 (1995)CrossRef
18.
go back to reference Hummers Jr., W.S., Offeman, R.E.: Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRef Hummers Jr., W.S., Offeman, R.E.: Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRef
19.
go back to reference Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)CrossRef Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)CrossRef
20.
go back to reference Jung, I., Dikin, Da, Piner, R.D., Ruoff, R.S.: Tunable electrical conductivity of individual graphene oxide sheets reduced at Low temperatures. Nano Lett. 8, 4283–4287 (2008)CrossRef Jung, I., Dikin, Da, Piner, R.D., Ruoff, R.S.: Tunable electrical conductivity of individual graphene oxide sheets reduced at Low temperatures. Nano Lett. 8, 4283–4287 (2008)CrossRef
21.
go back to reference Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon N. Y. 49, 3796–3802 (2011)CrossRef Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon N. Y. 49, 3796–3802 (2011)CrossRef
22.
go back to reference Hong, S.K., Kim, E.J., Kim, S.O., Cho, B.J.: Analysis on switching mechanism of graphene oxide resistive memory device. J. Appl. Phys. 110, 1–5 (2011)CrossRef Hong, S.K., Kim, E.J., Kim, S.O., Cho, B.J.: Analysis on switching mechanism of graphene oxide resistive memory device. J. Appl. Phys. 110, 1–5 (2011)CrossRef
23.
go back to reference Wu, H.-Y., Lin, C.-C., Lin, C.-H.: Characteristics of graphene-oxide-based flexible and transparent resistive switching memory. Ceram. Int. 41, S823–S828 (2015)CrossRef Wu, H.-Y., Lin, C.-C., Lin, C.-H.: Characteristics of graphene-oxide-based flexible and transparent resistive switching memory. Ceram. Int. 41, S823–S828 (2015)CrossRef
24.
go back to reference Kaiser, A.B., Cristina, G.N., Sundaram, R.S., Burghard, M., Kern, K.: Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9, 1787–1792 (2009)CrossRef Kaiser, A.B., Cristina, G.N., Sundaram, R.S., Burghard, M., Kern, K.: Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett. 9, 1787–1792 (2009)CrossRef
25.
go back to reference Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009)CrossRef Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., Chhowalla, M.: Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768–15771 (2009)CrossRef
26.
go back to reference Ekiz, O.O., Ürel, M., Güner, H., Mizrak, A.K., Dâna, A.: Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)CrossRef Ekiz, O.O., Ürel, M., Güner, H., Mizrak, A.K., Dâna, A.: Reversible electrical reduction and oxidation of graphene oxide. ACS Nano 5, 2475–2482 (2011)CrossRef
27.
go back to reference Yi, M., Cao, Y., Ling, H., Du, Z., Wang, L., Yang, T., Fan, Q., Xie, L., Huang, W.: Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film. Nanotechnology 25, 185202 (2014)CrossRef Yi, M., Cao, Y., Ling, H., Du, Z., Wang, L., Yang, T., Fan, Q., Xie, L., Huang, W.: Temperature dependence of resistive switching behaviors in resistive random access memory based on graphene oxide film. Nanotechnology 25, 185202 (2014)CrossRef
28.
go back to reference Porro, S., Accornero, E., Pirri, C.F., Ricciardi, C.: Memristive devices based on graphene oxide. Carbon N. Y. 85, 383–396 (2015)CrossRef Porro, S., Accornero, E., Pirri, C.F., Ricciardi, C.: Memristive devices based on graphene oxide. Carbon N. Y. 85, 383–396 (2015)CrossRef
29.
go back to reference He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Cui, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 2013–2016 (2009) He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Cui, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 2013–2016 (2009)
30.
go back to reference Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.Y.: Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010)CrossRef Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.E., Lee, J.Y., Yoon, T.H., Cho, B.J., Kim, S.O., Ruoff, R.S., Choi, S.Y.: Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010)CrossRef
31.
go back to reference Nho, H.W., Kim, J.Y., Wang, J., Shin, H.J., Choi, S.Y., Yoon, T.H.: Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory. J. Synchrotron Radiat. 21, 170–176 (2014)CrossRef Nho, H.W., Kim, J.Y., Wang, J., Shin, H.J., Choi, S.Y., Yoon, T.H.: Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory. J. Synchrotron Radiat. 21, 170–176 (2014)CrossRef
32.
go back to reference Khurana, G., Misra, P., Katiyar, R.S.: Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 114 (2013) Khurana, G., Misra, P., Katiyar, R.S.: Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 114 (2013)
33.
go back to reference Wei, H.Q., Zhou, P., Sun, Q.Q., Wang, L.H., Geng, Y., Zhang, D.W., Wang, X.B.: The nano-scale resistive memory effect of graphene oxide. IEEE Nanotechnol. Mater. Devices Conf. 54–57 (2012) Wei, H.Q., Zhou, P., Sun, Q.Q., Wang, L.H., Geng, Y., Zhang, D.W., Wang, X.B.: The nano-scale resistive memory effect of graphene oxide. IEEE Nanotechnol. Mater. Devices Conf. 54–57 (2012)
34.
go back to reference Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Cranozzi, C., Carfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)CrossRef Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Cranozzi, C., Carfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009)CrossRef
35.
go back to reference Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO2/HfO2 stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)CrossRef Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G., Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO2/HfO2 stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011)CrossRef
36.
go back to reference Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO 2 RRAM devices. Tech. Dig. - Int. Electron Devices Meet. IEDM, 421–424 (2011) Vandelli, L., Padovani, A., Larcher, L., Broglia, G., Ori, G., Montorsi, M., Bersuker, G., Pavan, P.: Comprehensive physical modeling of forming and switching operations in HfO 2 RRAM devices. Tech. Dig. - Int. Electron Devices Meet. IEDM, 421–424 (2011)
37.
go back to reference Schuler, F., Degraeve, R., Hendrickx, P., Wellekens, D.: Physical description of anomalous charge loss in floating gate based NVM’s and identification of its dominant parameter. 2002 IEEE Int. Reliab. Phys. Symp. Proceedings. 40th Annu. (Cat. No.02CH37320. 26–33 (2002) Schuler, F., Degraeve, R., Hendrickx, P., Wellekens, D.: Physical description of anomalous charge loss in floating gate based NVM’s and identification of its dominant parameter. 2002 IEEE Int. Reliab. Phys. Symp. Proceedings. 40th Annu. (Cat. No.02CH37320. 26–33 (2002)
38.
go back to reference Cheng, X.R., Cheng, Y.C., Liu, B.Y.: Nitridation-enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2. J. Appl. Phys. 63, 797–802 (1988)CrossRef Cheng, X.R., Cheng, Y.C., Liu, B.Y.: Nitridation-enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2. J. Appl. Phys. 63, 797–802 (1988)CrossRef
39.
go back to reference Nasyrov, Ka, Shaimeev, S.S., Gritsenko, Va: Trap-assisted tunneling hole injection in SiO2: Experiment and theory. J. Exp. Theor. Phys. 109, 786–793 (2009)CrossRef Nasyrov, Ka, Shaimeev, S.S., Gritsenko, Va: Trap-assisted tunneling hole injection in SiO2: Experiment and theory. J. Exp. Theor. Phys. 109, 786–793 (2009)CrossRef
40.
go back to reference Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98, 6–8 (2011)CrossRef Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98, 6–8 (2011)CrossRef
41.
go back to reference Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61, 674–681 (2014)CrossRef Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61, 674–681 (2014)CrossRef
42.
go back to reference Grierson, D.S., Sumant, A.V., Konicek, A.R., Friedmann, T.A., Sullivan, J.P., Carpick, R.W.: Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010)CrossRef Grierson, D.S., Sumant, A.V., Konicek, A.R., Friedmann, T.A., Sullivan, J.P., Carpick, R.W.: Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010)CrossRef
43.
go back to reference Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM - Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59, 1172–1182 (2012)CrossRef Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM - Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59, 1172–1182 (2012)CrossRef
44.
go back to reference Tiras, E., Ardali, S., Tiras, T., Arslan, E., Cakmakyapan, S., Kazar, O., Hassan, J., Janzén, E., Ozbay, E.: Effective mass of electron in monolayer graphene: Electron-phonon interaction. J. Appl. Phys 113 (2013) Tiras, E., Ardali, S., Tiras, T., Arslan, E., Cakmakyapan, S., Kazar, O., Hassan, J., Janzén, E., Ozbay, E.: Effective mass of electron in monolayer graphene: Electron-phonon interaction. J. Appl. Phys 113 (2013)
45.
go back to reference Jin, M., Jeong, H.-K., Yu, W.J., Bae, D.J., Kang, B.R., Lee, Y.H.: Graphene oxide thin film field effect transistors without reduction. J. Phys. D. Appl. Phys. 42, 135109 (2009)CrossRef Jin, M., Jeong, H.-K., Yu, W.J., Bae, D.J., Kang, B.R., Lee, Y.H.: Graphene oxide thin film field effect transistors without reduction. J. Phys. D. Appl. Phys. 42, 135109 (2009)CrossRef
46.
go back to reference Moldovan, D., Jiménez, O.: Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications (2011) Moldovan, D., Jiménez, O.: Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications (2011)
47.
go back to reference Kim, J.H., Hwang, J.H., Suh, J., Tongay, S., Kwon, S., Hwang, C.C., Wu, J., Young Park, J.: Work function engineering of single layer graphene by irradiation-induced defects. Appl. Phys. Lett., 103 (2013) Kim, J.H., Hwang, J.H., Suh, J., Tongay, S., Kwon, S., Hwang, C.C., Wu, J., Young Park, J.: Work function engineering of single layer graphene by irradiation-induced defects. Appl. Phys. Lett., 103 (2013)
48.
go back to reference Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)CrossRef Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)CrossRef
49.
go back to reference Venugopal, G., Krishnamoorthy, K., Mohan, R., Kim, S.-J.: An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012)CrossRef Venugopal, G., Krishnamoorthy, K., Mohan, R., Kim, S.-J.: An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012)CrossRef
50.
go back to reference Rezania, B., Severin, N., Talyzin, A.V., Rabe, J.P.: Hydration of bilayered graphene oxide. Nano Lett. 14, 3993–3998 (2014) Rezania, B., Severin, N., Talyzin, A.V., Rabe, J.P.: Hydration of bilayered graphene oxide. Nano Lett. 14, 3993–3998 (2014)
51.
go back to reference Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.-J.: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N. Y. 53, 38–49 (2013)CrossRef Krishnamoorthy, K., Veerapandian, M., Yun, K., Kim, S.-J.: The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N. Y. 53, 38–49 (2013)CrossRef
52.
go back to reference Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S.: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRef
53.
go back to reference Buchsteiner, A., Lerf, A., Pieper, J.: Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006)CrossRef Buchsteiner, A., Lerf, A., Pieper, J.: Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B 110, 22328–22338 (2006)CrossRef
Metadata
Title
Modeling and simulation of graphene-oxide-based RRAM
Authors
Ee Wah Lim
Mohammad Taghi Ahmadi
Razali Ismail
Publication date
17-03-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0813-6

Other articles of this Issue 2/2016

Journal of Computational Electronics 2/2016 Go to the issue