Skip to main content
Top
Published in: Journal of Electronic Materials 6/2021

19-03-2021 | Original Research Article

Modeling of the Growth Mechanisms of GaAsBi and GaAs Nanowires

Authors: Sonia Blel, C. Bilel

Published in: Journal of Electronic Materials | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we theoretically study the controlled growth mechanisms of planar GaAsBi and GaAs nanowires (NWs) on vicinal substrates. The method used in the present modeling investigation is based on kinetic Monte Carlo simulations. Along with this numeral approach, several experimental research works report that GaAsBi and GaAs NWs can be elaborated by molecular beam epitaxy. Our simulation results showed that the GaAsBi and GaAs NWs are formed at the step-edge of a vicinal surface. The modeling of the growth parameters such as the growth temperature and the deposition flux can provide important insights into the quality of the formed NWs. Particularly, high-quality NWs can be obtained via low deposition rate \(F = 1.66 \times 10^{ - 4} \;{\text{ML/s}}\) and growth temperature ~ 550 K. The maximum filling ratio of NWs can be reached for a coverage rate θ > 0.25 ML and a deposition flux in the range of \([10^{ - 5} - 10^{ - 3} ]\;{\text{ML/s}}\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
3.
4.
go back to reference Y. Zhang, J. Wu, M. Aagesen, and H. Liu, J. Phys. D Appl. Phys. 48, 463001 (2015).CrossRef Y. Zhang, J. Wu, M. Aagesen, and H. Liu, J. Phys. D Appl. Phys. 48, 463001 (2015).CrossRef
5.
go back to reference J.H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 6, 1436 (2009).CrossRef J.H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 6, 1436 (2009).CrossRef
6.
go back to reference L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, Nature 420, 57 (2002).CrossRef L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, Nature 420, 57 (2002).CrossRef
7.
go back to reference M. Bjork, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, and L. Samuelson, Nano Lett. 2, 87 (2002).CrossRef M. Bjork, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, and L. Samuelson, Nano Lett. 2, 87 (2002).CrossRef
8.
go back to reference Y. Liang, W.D. Nix, P.B. Grin, and J.D. Plummer, J. Appl. Phys. 97, 043519 (2005).CrossRef Y. Liang, W.D. Nix, P.B. Grin, and J.D. Plummer, J. Appl. Phys. 97, 043519 (2005).CrossRef
9.
11.
go back to reference F. Ishikawa, Y. Akamatsu, K. Watanabe, F. Uesugi, S. Asahina, U. Jahn, and S. Shimomura, Nano Lett. 15, 7265 (2015).CrossRef F. Ishikawa, Y. Akamatsu, K. Watanabe, F. Uesugi, S. Asahina, U. Jahn, and S. Shimomura, Nano Lett. 15, 7265 (2015).CrossRef
12.
go back to reference Z. Lu, Z. Zhang, P. Chen, S. Shi, L. Yao, C. Zhou, X. Zhou, J. Zou, and W. Lu, Appl. Phys. Lett. 105, 162102 (2014).CrossRef Z. Lu, Z. Zhang, P. Chen, S. Shi, L. Yao, C. Zhou, X. Zhou, J. Zou, and W. Lu, Appl. Phys. Lett. 105, 162102 (2014).CrossRef
13.
go back to reference Y. Essouda, H. Fitourin, R. Boussaha, N. Elayech, A. Rebey, and B. El Jani, Mater. Lett. 152, 298 (2015).CrossRef Y. Essouda, H. Fitourin, R. Boussaha, N. Elayech, A. Rebey, and B. El Jani, Mater. Lett. 152, 298 (2015).CrossRef
14.
go back to reference N. Baladés, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, and S.I. Molina, Nanoscale Res. Lett. 13, 1 (2018).CrossRef N. Baladés, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, and S.I. Molina, Nanoscale Res. Lett. 13, 1 (2018).CrossRef
15.
go back to reference R.B. Lewis, P. Corfdir, J. Herranz, H. Kupers, U. Jahn, O. Brandt, and L. Geelhaar, Nano Lett. 17, 4255 (2017).CrossRef R.B. Lewis, P. Corfdir, J. Herranz, H. Kupers, U. Jahn, O. Brandt, and L. Geelhaar, Nano Lett. 17, 4255 (2017).CrossRef
16.
go back to reference A.G. Suprunets, M.A. Vasilenko, and N.L. Shwartz, J. Phys. Conf. Ser. 690, 012011 (2016).CrossRef A.G. Suprunets, M.A. Vasilenko, and N.L. Shwartz, J. Phys. Conf. Ser. 690, 012011 (2016).CrossRef
18.
go back to reference Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimoto, Appl. Phys. Lett. 93, 131915 (2008).CrossRef Y. Tominaga, Y. Kinoshita, K. Oe, and M. Yoshimoto, Appl. Phys. Lett. 93, 131915 (2008).CrossRef
19.
go back to reference P.M. Asbeck, R.J. Welty, C.W. Tu, H.P. Xin, and R.E. Welser, Semicond. Sci. Technol. 17, 898 (2002).CrossRef P.M. Asbeck, R.J. Welty, C.W. Tu, H.P. Xin, and R.E. Welser, Semicond. Sci. Technol. 17, 898 (2002).CrossRef
20.
go back to reference B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).CrossRef B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).CrossRef
21.
go back to reference R.B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).CrossRef R.B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, Appl. Phys. Lett. 101, 082112 (2012).CrossRef
22.
go back to reference S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).CrossRef S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).CrossRef
23.
go back to reference T. Liu, S. Chandril, A.J. Ptak, D. Korakakis, and T.H. Myers, J. Cryst. Growth 304, 402 (2007).CrossRef T. Liu, S. Chandril, A.J. Ptak, D. Korakakis, and T.H. Myers, J. Cryst. Growth 304, 402 (2007).CrossRef
24.
25.
go back to reference X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, and M.B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).CrossRef X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, and M.B. Whitwick, Appl. Phys. Lett. 92, 192110 (2008).CrossRef
26.
27.
28.
go back to reference A. Mikkelsen, N.S. Öld, L. Ouattara, and E. Lundgren, Nanotechnology 17, S362 (2006).CrossRef A. Mikkelsen, N.S. Öld, L. Ouattara, and E. Lundgren, Nanotechnology 17, S362 (2006).CrossRef
29.
30.
go back to reference M. Soda, A. Rudolph, D. Schuh, J. Zweck, D. Bougeard, and E. Reiger, Phys. Rev. B 85, 245450 (2012).CrossRef M. Soda, A. Rudolph, D. Schuh, J. Zweck, D. Bougeard, and E. Reiger, Phys. Rev. B 85, 245450 (2012).CrossRef
31.
go back to reference D.F. Reyes, F. Bastiman, C.J. Hunter, D.L. Sales, A.M. Sanchez, J.P.R. David, and D. González, Nanoscale Res. Lett. 9, 23 (2014).CrossRef D.F. Reyes, F. Bastiman, C.J. Hunter, D.L. Sales, A.M. Sanchez, J.P.R. David, and D. González, Nanoscale Res. Lett. 9, 23 (2014).CrossRef
32.
33.
go back to reference A.W. Wood, K. Collar, J. Li, A.S. Brown, and S.E. Babcock, Nanotechnology 27, 115704 (2016).CrossRef A.W. Wood, K. Collar, J. Li, A.S. Brown, and S.E. Babcock, Nanotechnology 27, 115704 (2016).CrossRef
34.
go back to reference J.A. Steele, R.A. Lewis, J. Horvat, M.J.B. Nancarrow, M. Henini, D. Fan, Y.I. Mazur, M. Schmidbauer, M.E. Ware, S.-Q. Yu, and G.J. Salamo, Sci. Rep. 6, 1 (2016).CrossRef J.A. Steele, R.A. Lewis, J. Horvat, M.J.B. Nancarrow, M. Henini, D. Fan, Y.I. Mazur, M. Schmidbauer, M.E. Ware, S.-Q. Yu, and G.J. Salamo, Sci. Rep. 6, 1 (2016).CrossRef
35.
go back to reference J.A. Steele, J. Horvat, R.A. Lewis, M. Henini, D. Fan, Yu.I. Mazur, V.G. Dorogan, P.C. Grant, S.-Q. Yu, and G.J. Salamo, Nanoscale 7, 20442 (2015).CrossRef J.A. Steele, J. Horvat, R.A. Lewis, M. Henini, D. Fan, Yu.I. Mazur, V.G. Dorogan, P.C. Grant, S.-Q. Yu, and G.J. Salamo, Nanoscale 7, 20442 (2015).CrossRef
36.
go back to reference H. Fitouri, I. Moussa, A. Rebey, and B. El Jani, Microelectron. Eng. 88, 476 (2011).CrossRef H. Fitouri, I. Moussa, A. Rebey, and B. El Jani, Microelectron. Eng. 88, 476 (2011).CrossRef
37.
go back to reference H. Fitouri, I. Moussa, A. Rebey, and B. El Jani, J. Cryst. Growth 300, 347 (2007).CrossRef H. Fitouri, I. Moussa, A. Rebey, and B. El Jani, J. Cryst. Growth 300, 347 (2007).CrossRef
38.
go back to reference Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, J. Cryst. Growth 330, 35 (2011).CrossRef Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, J. Cryst. Growth 330, 35 (2011).CrossRef
39.
go back to reference H. Fitouri, R. Boussaha, A. Rebey, and B. El Jani, Appl. Phys. A 112, 701 (2013).CrossRef H. Fitouri, R. Boussaha, A. Rebey, and B. El Jani, Appl. Phys. A 112, 701 (2013).CrossRef
40.
go back to reference K.N. Collar, J. Li, W. Jiao, W. Kong, and A.S. Brown, Nanotechnology 29, 035604 (2018).CrossRef K.N. Collar, J. Li, W. Jiao, W. Kong, and A.S. Brown, Nanotechnology 29, 035604 (2018).CrossRef
41.
go back to reference A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, J. Cryst. Growth 338, 107 (2012).CrossRef A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, J. Cryst. Growth 338, 107 (2012).CrossRef
42.
go back to reference N. Baladés, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, and S.I. Molina, Nanoscale Res. Lett. 13, 125 (2018).CrossRef N. Baladés, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards, and S.I. Molina, Nanoscale Res. Lett. 13, 125 (2018).CrossRef
43.
go back to reference M.A. Stevens, K.A. Grossklaus, J.H. Mcelearney, and T.E. Vandervelde, J. Electron. Mater. 48, 5 (2019).CrossRef M.A. Stevens, K.A. Grossklaus, J.H. Mcelearney, and T.E. Vandervelde, J. Electron. Mater. 48, 5 (2019).CrossRef
44.
go back to reference T. Matsuda, K. Takada, K. Yano, S. Shimomura, and F. Ishikawa, J. Appl. Phys. 125, 194301 (2019).CrossRef T. Matsuda, K. Takada, K. Yano, S. Shimomura, and F. Ishikawa, J. Appl. Phys. 125, 194301 (2019).CrossRef
46.
48.
go back to reference S.J. Zelewski, J. Kopaczek, W.M. Linhart, F. Ishikawa, S. Shimomura, and R. Kudrawiec, Appl. Phys. Lett. 109, 182106 (2016).CrossRef S.J. Zelewski, J. Kopaczek, W.M. Linhart, F. Ishikawa, S. Shimomura, and R. Kudrawiec, Appl. Phys. Lett. 109, 182106 (2016).CrossRef
49.
go back to reference A.D. Zdetsis, E.N. Koukaras, and D.A. Zdetsis, Microelectron. Eng. 90, 99 (2012).CrossRef A.D. Zdetsis, E.N. Koukaras, and D.A. Zdetsis, Microelectron. Eng. 90, 99 (2012).CrossRef
Metadata
Title
Modeling of the Growth Mechanisms of GaAsBi and GaAs Nanowires
Authors
Sonia Blel
C. Bilel
Publication date
19-03-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 6/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08850-7

Other articles of this Issue 6/2021

Journal of Electronic Materials 6/2021 Go to the issue

Topical Collection: 62nd Electronic Materials Conference 2020

Effect of GaN Substrate Properties on Vertical GaN PiN Diode Electrical Performance