Skip to main content
Top
Published in: Archive of Applied Mechanics 4/2019

20-02-2019 | Review Article

Modelling and simulation methods applied to coupled problems in porous-media mechanics

Authors: Wolfgang Ehlers, Arndt Wagner

Published in: Archive of Applied Mechanics | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Continuum mechanics usually considers the theoretical and computational description of standard single-phasic materials in the framework of either solid mechanics, fluid mechanics or gas dynamics. However, growing complexity in material modelling combined with the request of users leads to a growing interest in porous-media mechanics, where porous solid materials with fluid or gaseous pore content are investigated on a macroscopic scale. In this regard, the present article reviews the theoretical and numerical framework for the description of geomechanical and biomechanical problems including elastic, elasto-plastic and visco-elastic solid behaviour partly combined with electro-active properties. For this purpose, the Theory of Porous Media is applied for an elegant consideration of the coupling phenomena of porous solids with pore fluids, no matter if the fluids have to be treated as inert fluids or as fluid mixtures. In the sense of a review article, different computational examples are presented to illuminate the possibilities and challenges of porous-media mechanics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976) Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)
2.
go back to reference Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefMATH Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)CrossRefMATH
3.
go back to reference Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)CrossRefMATH Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)CrossRefMATH
4.
go back to reference de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)CrossRefMATH de Boer, R.: Trends in Continuum Mechanics of Porous Media, vol. 18. Theory and Applications of Transport in Porous Media. Springer, Dodrecht (2005)CrossRefMATH
5.
go back to reference Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)CrossRef Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)CrossRef
6.
go back to reference Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)CrossRef Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. Int. J. Adv. Eng. Sci. Appl. Math. 1, 1–24 (2009)CrossRef
8.
go back to reference Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefMATH Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefMATH
9.
10.
go back to reference Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998) Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.) Finite Elemente in der Baupraxis-FEM’98, pp. 391–400. Ernst & Sohn, Berlin (1998)
11.
go back to reference Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)CrossRefMATH Ehlers, W., Ellsiepen, P., Ammann, M.: Time-and space-adaptive methods applied to localization phenomena in empty and saturated micropolar and standard porous materials. Int. J. Numer. Methods Eng. 52, 503–526 (2001)CrossRefMATH
12.
go back to reference Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)CrossRefMATH Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated soft biological tissues and chemically active gels. Arch. Appl. Mech. 80, 467–478 (2010)CrossRefMATH
13.
go back to reference Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)CrossRef Ehlers, W., Karajan, N., Markert, B.: An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233–251 (2009)CrossRef
14.
go back to reference Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)CrossRef Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand. Int. J. Numer. Anal. Methods Geomech. 37(8), 787–809 (2013)CrossRef
15.
go back to reference Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)MathSciNetCrossRef Ehlers, W., Häberle, K.: Interfacial mass transfer during gas-liquid phase change in deformable porous media with heat transfer. Transp. Porous Med. 114, 525–556 (2016)MathSciNetCrossRef
16.
go back to reference Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)CrossRef Schenke, M., Ehlers, W.: Parallel solution of volume-coupled multi-field problems using an Abaqus-PANDAS software interface. Proc. Appl. Math. Mech. 15, 419–420 (2015)CrossRef
17.
go back to reference Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH Hashin, Z.: Analysis of composite materials-a survey. ASME J. Appl. Mech. 50, 481–505 (1983)CrossRefMATH
18.
go back to reference Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)CrossRef Ehlers, W.: Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomech. Energy Environ. 15, 35–46 (2018)CrossRef
19.
go back to reference Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)MathSciNetCrossRefMATH Taylor, C., Hood, P.: A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)MathSciNetCrossRefMATH
20.
21.
go back to reference Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964) Brooks, R.H., Corey, A.T.: Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)
22.
go back to reference Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)CrossRefMATH Wieners, C., Graf, T., Ammann, M., Ehlers, W.: Parallel Krylov methods and the application to 3-d simulations of a triphasic porous media model in soil mechanics. Computat. Mech. 36, 409–420 (2005)CrossRefMATH
23.
go back to reference Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802) Dalton, J.: On the expansion of elastic fluids by heat. Essay IV of Mem. Lit. Philos. Soc. Manch. 5, 595–602 (1802)
24.
go back to reference de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRef de Borst, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)CrossRef
25.
go back to reference Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)MathSciNetCrossRefMATH Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elasto-plasticity. Int. J. Solids Strucut. 31, 1063–1084 (1994)MathSciNetCrossRefMATH
26.
go back to reference Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)CrossRefMATH Ehlers, W., Volk, W.: On theoretical and numerical methods in the theory of porous media based on polar and non-polar elastoplastic solid materials. Int. J. Solids Struct. 35, 4597–4617 (1998)CrossRefMATH
27.
go back to reference Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)CrossRefMATH Needleman, A.: Material rate dependence and mesh sensitivity in localization problems. Comput. Methods Appl. Mech. Eng. 67, 69–85 (1988)CrossRefMATH
28.
29.
go back to reference de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)CrossRef de Borst, R., Sluys, L.J., Mühlhaus, H.-B., Pamin, J.: Fundamental issues in finite element analysis of localization of deformation. Eng. Comput. 10, 99–121 (1993)CrossRef
30.
go back to reference Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)CrossRefMATH Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis in partially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)CrossRefMATH
31.
go back to reference Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRef
32.
go back to reference Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957) Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)
33.
go back to reference Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRef Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)MathSciNetCrossRef
34.
go back to reference Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetCrossRefMATH Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetCrossRefMATH
35.
go back to reference Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefMATH Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)CrossRefMATH
36.
go back to reference Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)CrossRef
37.
go back to reference Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefMATH Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefMATH
38.
go back to reference Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)MathSciNetCrossRef Ehlers, W., Luo, C.: A phase-field approach embedded in the Theory of Porous Media for the description of dynamic hydraulic fracturing. Comput. Methods Appl. Mech. Eng. 315, 348–368 (2017)MathSciNetCrossRef
39.
go back to reference Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)MathSciNetCrossRef Ehlers, W., Luo, C.: A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, Part II: the crack-opening indicator. Comput. Methods Appl. Mech. Eng. 341, 429–442 (2018)MathSciNetCrossRef
40.
go back to reference Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009) Acartürk, A.: Simulation of charged hydrated porous media, Dissertation, Report No. II-18 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)
41.
go back to reference Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)MathSciNetCrossRef Ehlers, W., Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transp. Porous Med. 34, 179–191 (1999)MathSciNetCrossRef
42.
go back to reference Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009) Karajan, N.: An extended biphasic description of the inhomogeneous and anisotropic intervertebral disc. Dissertation Thesis, Report No. II-19 of the Institute of Applied Mechanics (CE), University of Stuttgart (2009)
43.
go back to reference Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)CrossRef Ehlers, W., Wagner, A.: Constitutive and computational aspects in tumor therapies of multiphasic brain tissue. In: Holzapfel, G.A., Kuhl, E. (eds.) Computer Models in Biomechanics: from Nano to Macro, pp. 263–276. Springer, Dordrecht (2013)CrossRef
44.
go back to reference Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)CrossRef Ehlers, W., Wagner, A.: Multi-component modelling of human brain tissue: a contribution to the constitutive and computational description of deformation, flow and diffusion processes with application to the invasive drug-delivery problem. Comput. Methods Biomech. Biomed. Eng. 18, 861–879 (2015)CrossRef
45.
go back to reference Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)CrossRefMATH Markert, B., Ehlers, W., Karajan, N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)CrossRefMATH
46.
go back to reference Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)CrossRef Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl Acad. Sci. USA (PNAS) 91, 2076–2080 (1994)CrossRef
47.
go back to reference Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)CrossRef Fink, D., Wagner, A., Ehlers, W.: Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. J. Comput. Sci. 24, 101–115 (2018)CrossRef
48.
go back to reference Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935) Biot, M.A.: Le problème de la consolidation de matières argileuses sous une charge. Annales de la Société scientifique de Bruxelles B55, 110–113 (1935)
49.
go back to reference Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefMATH Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefMATH
50.
go back to reference Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956) Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)
51.
go back to reference Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956) Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)
52.
go back to reference Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)MathSciNetCrossRefMATH Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)MathSciNetCrossRefMATH
53.
go back to reference Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)MathSciNetCrossRefMATH Biot, M.A.: Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concept and methods. Q. Appl. Math. 36, 1–38 (1978)MathSciNetCrossRefMATH
55.
56.
go back to reference Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014) Ehlers, W.: Porous media in the light of history. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics–Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics (LAMM) vol. 1, pp. 211–227. Springer, Heidelberg (2014)
57.
go back to reference Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)MATH Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Deformation and Consolidation of Porous Media. Wiley, Chichester (1987)MATH
58.
go back to reference Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959) Bishop, A.W.: The effective stress principle. Teknisk Ukeblad 39, 859–863 (1959)
59.
go back to reference Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960) Skempton, A.W.: Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In: Bjerrum, L., Casagrande, A., Peck, R.B., Skempton, A.W. (eds.) From Theory to Practice in Soil Mechanics, pp. 42–53. Wiley, New York (1960)
61.
go back to reference Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef Lade, P., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)CrossRef
62.
go back to reference Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefMATH Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)CrossRefMATH
63.
go back to reference Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)MathSciNetCrossRef Jiang, Y., Einav, I., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2017)MathSciNetCrossRef
64.
go back to reference Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)CrossRefMATH Ehlers, W., Ammann, M., Diebels, S.: h-adaptive FE methods applied to single- and multiphase problems. Int. J. Numer. Methods Eng. 54, 219–239 (2002)CrossRefMATH
65.
go back to reference Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001) Ehlers, W., Ellsiepen, P.: Theoretical and numerical methods in environmental continuum mechanics based on the theory of porous media. In: Schrefler, B.A. (ed.) Environmental Geomechanics, CISM Courses and Lectures No. 417, pp. 1–81. Springer, Wien (2001)
66.
go back to reference Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRef Boone, T.J., Ingraffea, A.R.: A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRef
67.
go back to reference Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990) Boone, T.J., Detournay, E.: Response of a vertical hydraulic fracture intersecting a poroelastic formation bounded by semi-infinite impermeable elastic layers. Int. J. Rock Mech. Min. Sci. Geomech. 27, 189–197 (1990)
68.
go back to reference Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)CrossRef Detournay, E.: Propagation regimes of fluid-driven fractures in impermeable rocks. Int. J. Geomech. 4, 35–45 (2004)CrossRef
69.
go back to reference Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)CrossRef Heider, Y., Reiche, S., Siebert, P., Markert, B.: Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data. Eng. Fract. Mech. 202, 116–134 (2018)CrossRef
70.
go back to reference Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)MathSciNetCrossRefMATH Mikelić, A., Wheeler, M.F., Wick, T.: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13, 367–398 (2015)MathSciNetCrossRefMATH
71.
go back to reference Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)CrossRef Markert, B., Heider, Y.: Coupled multi-field continuum methods for porous media fracture. In: Mehl, M., Bischoff, M., Schäfer, M. (eds.) Recent Trends in Computational Engineering-CE2014, pp. 167–180. Springer, Berlin (2015)CrossRef
72.
go back to reference Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)CrossRef Pillai, U., Heider, Y., Markert, B.: A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput. Mater. Sci. 153, 36–47 (2018)CrossRef
73.
go back to reference Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefMATH Remij, E.W., Remmers, J.J.C., Huyghe, J.M., Smeulders, D.M.J.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefMATH
74.
go back to reference Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017) Ateshian, G.A.: Mixture theory for modeling biological tissues: Illustrations from articular cartilage. In: Holzapfel, G., Ogden, R.W. (eds.) Biomechanics: Trends in Modeling and Simulation, pp. 1–51. Springer, Cham (2017)
75.
go back to reference Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)CrossRef Ding, J., Remmers, J.J.C., Leszczynski, S., Huyghe, J.M.: Swelling driven crack propagation in large deformation in ionized hydrogel. J. Appl. Mech. 85, 021007 (2018)CrossRef
76.
go back to reference Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)CrossRef Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)CrossRef
77.
go back to reference Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)CrossRef Huyghe, J.M., Molenaar, M.M., Baajens, F.P.: Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. 129, 776–785 (2007)CrossRef
78.
go back to reference Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)CrossRef Huyghe, J.M., Wilson, W., Malakpoor, K.: On the thermodynamical admissibility of the triphasic theory of charged hydrated tissues. J. Biomech. Eng. 131, 044504 (2009)CrossRef
79.
go back to reference Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)CrossRef Huyghe, J.M.: Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. Anais da Academia Brasileira de Cincias 82, 145–151 (2010)CrossRef
80.
go back to reference Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009) Kraaijeveld, F.: Propagating discontinuities in ionized porous media. Dissertation Thesis, TU of Eindhoven (2009)
81.
go back to reference Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113, 245–258 (1991)CrossRef
82.
go back to reference Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef Mow, V.C., Guo, X.E.: Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu. Rev. Biomed. Eng. 4, 175–209 (2002)CrossRef
83.
go back to reference Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)CrossRef Bobo, R.H., Laske, D.W., Akbasak, A., Morrison, P.F., Dedrick, R.L., Oldfield, E.H.: Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. 91, 2076–2080 (1994)CrossRef
84.
go back to reference Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013) Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, Berlin (2013)
85.
go back to reference Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)CrossRef Goriely, A., Geers, M.G., Holzapfel, G.A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., Squier, W., van Dommelen, J.A., Waters, S., Kuhl, E.: Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol 14, 931–965 (2015)CrossRef
86.
go back to reference Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001) Holzapfel, G.A.: Biomechanics of soft tissue. Handb Mater Behav Model 3, 1049–1063 (2001)
87.
go back to reference Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)CrossRef Miller, K., Chinzei, K.: Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30(11), 1115–1121 (1997)CrossRef
88.
go back to reference Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)MathSciNetCrossRefMATH Linninger, A.A., Somayaji, M.R., Mekarsk, M., Zhang, L.: Prediction of convection enhanced drug delivery to the human brain. J. Theor. Biol. 250, 125–138 (2008)MathSciNetCrossRefMATH
89.
go back to reference Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)CrossRef Ricken, T., Schwarz, A., Bluhm, J.: A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci. 39, 124–136 (2007)CrossRef
90.
go back to reference Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)CrossRef Sarntinoranont, M., Chen, X., Zhao, J., Mareci, T.M.: Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34, 1304–1321 (2006)CrossRef
91.
go back to reference Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)MathSciNetCrossRef Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92, 119–143 (2011)MathSciNetCrossRef
Metadata
Title
Modelling and simulation methods applied to coupled problems in porous-media mechanics
Authors
Wolfgang Ehlers
Arndt Wagner
Publication date
20-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 4/2019
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01520-5

Other articles of this Issue 4/2019

Archive of Applied Mechanics 4/2019 Go to the issue

Premium Partners