Skip to main content
Top
Published in: Neuroinformatics 4/2011

01-12-2011

Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks

Authors: Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga, Ruth Benavides-Piccione, Javier DeFelipe

Published in: Neuroinformatics | Issue 4/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback–Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The term “database” refers to the sets of 3D reconstructions of basal dendrites from each of the three cortical areas. The term “dataset” is used to refer to the values of the variables measured for each pair of sibling segments in those reconstructions.
 
Literature
go back to reference Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2009). An approach to capturing neuron morphological diversity. In E. De Schutter (Ed.), Computational modeling methods for neuroscientists (pp. 211–232). The MIT Press. Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2009). An approach to capturing neuron morphological diversity. In E. De Schutter (Ed.), Computational modeling methods for neuroscientists (pp. 211–232). The MIT Press.
go back to reference Ascoli, G. A. (2007). Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef Ascoli, G. A. (2007). Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef
go back to reference Ascoli, G. A., & Krichmar, J. L. (2000). L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef Ascoli, G. A., & Krichmar, J. L. (2000). L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef
go back to reference Ascoli, G. A., Krichmar, J. L., Nasuto, S., & Senft, S. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.PubMedCrossRef Ascoli, G. A., Krichmar, J. L., Nasuto, S., & Senft, S. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.PubMedCrossRef
go back to reference Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRef Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRef
go back to reference Ascoli, G. A., Alonso-Nanclares, L., Anderson, S., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of gabaergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.PubMedCrossRef Ascoli, G. A., Alonso-Nanclares, L., Anderson, S., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of gabaergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.PubMedCrossRef
go back to reference Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572.CrossRef Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572.CrossRef
go back to reference Benavides-Piccione, R., Ballesteros-Yáñez, I., Martínez de Legrán, M., Elston, G., Estivill, X., Fillat, C., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.PubMedCrossRef Benavides-Piccione, R., Ballesteros-Yáñez, I., Martínez de Legrán, M., Elston, G., Estivill, X., Fillat, C., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.PubMedCrossRef
go back to reference Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16, 990–1001.PubMedCrossRef Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16, 990–1001.PubMedCrossRef
go back to reference Brown, K. M., Gillette, T. A., & Ascoli, G. A. (2008). Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell & Developmental Biology, 19, 485–493.CrossRef Brown, K. M., Gillette, T. A., & Ascoli, G. A. (2008). Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell & Developmental Biology, 19, 485–493.CrossRef
go back to reference Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRef Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRef
go back to reference Chen, J. Y. (2009). A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4), 1086–1111.CrossRef Chen, J. Y. (2009). A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4), 1086–1111.CrossRef
go back to reference Cline, H. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.PubMedCrossRef Cline, H. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.PubMedCrossRef
go back to reference Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347. Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
go back to reference DeFelipe, J. (2008). The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience,, 2, 10–12.PubMedCrossRef DeFelipe, J. (2008). The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience,, 2, 10–12.PubMedCrossRef
go back to reference DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39, 563–607.PubMedCrossRef DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39, 563–607.PubMedCrossRef
go back to reference Devaud J. M., Quenet, B., Gascuel, J., & Masson, C. (2000). Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology, 62, 657–674.PubMedCrossRef Devaud J. M., Quenet, B., Gascuel, J., & Masson, C. (2000). Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology, 62, 657–674.PubMedCrossRef
go back to reference Ding, B., Gentleman, R., & Carey, V. (2010). bioDist: Different distance measures. R package version 1.18.0. Ding, B., Gentleman, R., & Carey, V. (2010). bioDist: Different distance measures. R package version 1.18.0.
go back to reference Donohue, D. E., & Ascoli, G. A. (2005a). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19(2), 223–238.PubMedCrossRef Donohue, D. E., & Ascoli, G. A. (2005a). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19(2), 223–238.PubMedCrossRef
go back to reference Donohue, D. E., & Ascoli, G. A. (2005b). Models of neuronal outgrowth. In S. Koslow, & S. Subramaniam (Eds.), Databasing the brain: From data to knowledge (pp. 303–326). New York: Wiley. Donohue, D. E., & Ascoli, G. A. (2005b). Models of neuronal outgrowth. In S. Koslow, & S. Subramaniam (Eds.), Databasing the brain: From data to knowledge (pp. 303–326). New York: Wiley.
go back to reference Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.CrossRef Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.CrossRef
go back to reference Elston, G. (2007). Specializations in pyramidal cell structure during primate evolution. In J. Kaas, & T. Preuss (Eds.), Evolution of nervous systems (pp. 191–242). Academic: Oxford.CrossRef Elston, G. (2007). Specializations in pyramidal cell structure during primate evolution. In J. Kaas, & T. Preuss (Eds.), Evolution of nervous systems (pp. 191–242). Academic: Oxford.CrossRef
go back to reference Elston, G., & Rosa, M. (1997). The occipito-parietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452.PubMedCrossRef Elston, G., & Rosa, M. (1997). The occipito-parietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452.PubMedCrossRef
go back to reference Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39.PubMedCrossRef Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39.PubMedCrossRef
go back to reference Feldman, M. (1984). Morphology of the neocortical pyramidal neuron. In A. Peters, & E. Jones (Eds.), Cerebral cortex. Cellular components of the cerebral cortex (Vol. 1, pp. 201–253). New York: Plenum Press. Feldman, M. (1984). Morphology of the neocortical pyramidal neuron. In A. Peters, & E. Jones (Eds.), Cerebral cortex. Cellular components of the cerebral cortex (Vol. 1, pp. 201–253). New York: Plenum Press.
go back to reference Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (UAI 96) (pp. 274–282). Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (UAI 96) (pp. 274–282).
go back to reference Friedman, N., Goldszmith, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI 99) (pp. 196–205). Friedman, N., Goldszmith, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI 99) (pp. 196–205).
go back to reference Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.CrossRef Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.CrossRef
go back to reference Glaser, J., & Glaser, E. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.PubMedCrossRef Glaser, J., & Glaser, E. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.PubMedCrossRef
go back to reference Hamilton, P. (1993). A language to describe the growth of neurites. Biological Cybernetics, 68(6), 559–565.PubMedCrossRef Hamilton, P. (1993). A language to describe the growth of neurites. Biological Cybernetics, 68(6), 559–565.PubMedCrossRef
go back to reference Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.PubMedCrossRef Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.PubMedCrossRef
go back to reference Heckerman, D. (1996). A tutorial on learning with Bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Corporation. Heckerman, D. (1996). A tutorial on learning with Bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Corporation.
go back to reference Hentschel, H. G., & van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2231–2238.CrossRef Hentschel, H. G., & van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2231–2238.CrossRef
go back to reference Heumann, H., & Wittum, G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics, 7(3), 179–190.PubMedCrossRef Heumann, H., & Wittum, G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics, 7(3), 179–190.PubMedCrossRef
go back to reference Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). MIT Press. Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). MIT Press.
go back to reference Jacobs, B., & Scheibel, A. (2002). Regional dendritic variation in primate cortical pyramidal cells. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 111–131). CRC Press. Jacobs, B., & Scheibel, A. (2002). Regional dendritic variation in primate cortical pyramidal cells. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 111–131). CRC Press.
go back to reference Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.PubMedCrossRef Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.PubMedCrossRef
go back to reference Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3, 1171–1177.PubMedCrossRef Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3, 1171–1177.PubMedCrossRef
go back to reference Koch, C., Poggio, T., & Torres, V. (1982). Retinal ganglion cells: A functional interpretation of dendritic morphology. Proceedings of the Royal Society of London. Series B, Biological Sciences, 298(1090), 227–263. Koch, C., Poggio, T., & Torres, V. (1982). Retinal ganglion cells: A functional interpretation of dendritic morphology. Proceedings of the Royal Society of London. Series B, Biological Sciences, 298(1090), 227–263.
go back to reference Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J., et al. (2009). Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7(3), 195–210.PubMedCrossRef Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J., et al. (2009). Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7(3), 195–210.PubMedCrossRef
go back to reference Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Principles and techniques. The MIT Press. Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Principles and techniques. The MIT Press.
go back to reference Krause, P. J. (1998). Learning probabilistic networks. Knowledge Engineering Review, 13(4), 321–351.CrossRef Krause, P. J. (1998). Learning probabilistic networks. Knowledge Engineering Review, 13(4), 321–351.CrossRef
go back to reference Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.CrossRef Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.CrossRef
go back to reference Larkman, A. (1991). Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306(2), 307–319.PubMedCrossRef Larkman, A. (1991). Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306(2), 307–319.PubMedCrossRef
go back to reference Leray, P., & Francois, O. (2006). BNT structure learning package: Documentation and experiments. Tech. Rep. FRE CNRS 2645, Laboratoire PSI—INSA Rouen. Leray, P., & Francois, O. (2006). BNT structure learning package: Documentation and experiments. Tech. Rep. FRE CNRS 2645, Laboratoire PSI—INSA Rouen.
go back to reference Li, G. H., & Qin, C. D. (1996). A model for neurite growth and neuronal morphogenesis. Mathematical Biosciences, 132(1), 97–110.PubMedCrossRef Li, G. H., & Qin, C. D. (1996). A model for neurite growth and neuronal morphogenesis. Mathematical Biosciences, 132(1), 97–110.PubMedCrossRef
go back to reference Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef
go back to reference Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157(1), 132–141.PubMedCrossRef Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157(1), 132–141.PubMedCrossRef
go back to reference Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef
go back to reference McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10(10), 963–973.PubMedCrossRef McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10(10), 963–973.PubMedCrossRef
go back to reference Miina, J., & Pukkala, T. (2002). Application of ecological field theory in distance-dependent growth modelling. Forest Ecology and Management, 161, 101–107.CrossRef Miina, J., & Pukkala, T. (2002). Application of ecological field theory in distance-dependent growth modelling. Forest Ecology and Management, 161, 101–107.CrossRef
go back to reference Murphy, K. (2001). The Bayes net toolbox for Matlab. In E. Wegman, A. Braverman, A. Goodman, & P Smyth (Eds.), Computing science and statistics. Proceedings of the 33rd symposium on the interface (Vol. 33, pp. 331–350). Murphy, K. (2001). The Bayes net toolbox for Matlab. In E. Wegman, A. Braverman, A. Goodman, & P Smyth (Eds.), Computing science and statistics. Proceedings of the 33rd symposium on the interface (Vol. 33, pp. 331–350).
go back to reference Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.
go back to reference Pourret, O., Naïm, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. Wiley. Pourret, O., Naïm, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. Wiley.
go back to reference R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
go back to reference Robert, M. E., & Sweeney, J. D. (1997). Computer model: Investigating the role of filopodia-based steering in experimental neurite galvanotropism. Journal of Theoretical Biology, 188(3), 277–288.PubMedCrossRef Robert, M. E., & Sweeney, J. D. (1997). Computer model: Investigating the role of filopodia-based steering in experimental neurite galvanotropism. Journal of Theoretical Biology, 188(3), 277–288.PubMedCrossRef
go back to reference Romero, V., Rumí, R., & Salmerón, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54–68.CrossRef Romero, V., Rumí, R., & Salmerón, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54–68.CrossRef
go back to reference Rozenberg, G., & Salomaa, A. (1980). The mathematical theory of L-systems. New York: Academic Press. Rozenberg, G., & Salomaa, A. (1980). The mathematical theory of L-systems. New York: Academic Press.
go back to reference Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71(2), 173–187.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71(2), 173–187.PubMedCrossRef
go back to reference Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.CrossRef Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.CrossRef
go back to reference Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4(4), 359–365.PubMedCrossRef Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4(4), 359–365.PubMedCrossRef
go back to reference Shepherd, G. M. (ed) (2004). The synaptic organization of the brain (5th edn). Oxford University Press. Shepherd, G. M. (ed) (2004). The synaptic organization of the brain (5th edn). Oxford University Press.
go back to reference Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9(3), 206–221.PubMedCrossRef Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9(3), 206–221.PubMedCrossRef
go back to reference Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef
go back to reference Sumida, A., Terazawa, I., Togashi, A., & Komiyama, A. (2002). Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany, 82, 301–310.CrossRef Sumida, A., Terazawa, I., Togashi, A., & Komiyama, A. (2002). Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany, 82, 301–310.CrossRef
go back to reference Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2006). Shaping realistic neuronal morphologies: An evolutionary computation method. In International joint conference on neural networks (IJCNN2006) (pp. 573–580). Vancouver, Canada. Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2006). Shaping realistic neuronal morphologies: An evolutionary computation method. In International joint conference on neural networks (IJCNN2006) (pp. 573–580). Vancouver, Canada.
go back to reference Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2007). On the neuronal morphology-function relationship: A synthetic approach. In Knowledge discovery and emergent complexity in bioinformatics, LNBI. (Vol. 4366, pp. 135–149). Springer. Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2007). On the neuronal morphology-function relationship: A synthetic approach. In Knowledge discovery and emergent complexity in bioinformatics, LNBI. (Vol. 4366, pp. 135–149). Springer.
go back to reference Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008a). Evol-neuron: Neuronal morphology generation. Neurocomputing, 71, 963–972.CrossRef Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008a). Evol-neuron: Neuronal morphology generation. Neurocomputing, 71, 963–972.CrossRef
go back to reference Torben-Nielsen, B., Vanderlooy, S., & Postma, E. O. (2008b). Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6, 257–277.PubMedCrossRef Torben-Nielsen, B., Vanderlooy, S., & Postma, E. O. (2008b). Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6, 257–277.PubMedCrossRef
go back to reference Uylings, H. B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13, 397–414.CrossRef Uylings, H. B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13, 397–414.CrossRef
go back to reference Uylings, H. B., Ruiz-Marcos, A., & Van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience Methods, 18, 127–151.PubMedCrossRef Uylings, H. B., Ruiz-Marcos, A., & Van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience Methods, 18, 127–151.PubMedCrossRef
go back to reference Van Pelt, J., & Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311. Van Pelt, J., & Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.
go back to reference Van Pelt, J., & Uylings, H. B. (2005). Natural variability in the geometry of dendritic branching patterns. In G. Reeke, R. Poznanski, K. Lindsay, J. Rosenberg, & O. Sporns (Eds.), Modeling in the neurosciences: From biological systems to neuromimetic robotics (pp. 89–116). CRC Press. Van Pelt, J., & Uylings, H. B. (2005). Natural variability in the geometry of dendritic branching patterns. In G. Reeke, R. Poznanski, K. Lindsay, J. Rosenberg, & O. Sporns (Eds.), Modeling in the neurosciences: From biological systems to neuromimetic robotics (pp. 89–116). CRC Press.
go back to reference Van Pelt, J., van Ooyen, A., & Uylings, H. B. (2001). Modeling dendritic geometry and the development of nerve connections. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 179–208). CRC Press. Van Pelt, J., van Ooyen, A., & Uylings, H. B. (2001). Modeling dendritic geometry and the development of nerve connections. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 179–208). CRC Press.
go back to reference Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef
go back to reference Verwer, R., van Pelt, J., & Uylings, H. B. (1992). An introduction to topological analysis of neurones. In M Stewart (Ed.), Quantitative methods in neuroanatomy (pp. 292–323). John Wiley and Sons. Verwer, R., van Pelt, J., & Uylings, H. B. (1992). An introduction to topological analysis of neurones. In M Stewart (Ed.), Quantitative methods in neuroanatomy (pp. 292–323). John Wiley and Sons.
go back to reference Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.PubMed Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.PubMed
go back to reference Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vectors. In IEEE international symposium on information theory (ISIT 2006) (pp. 242–246). Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vectors. In IEEE international symposium on information theory (ISIT 2006) (pp. 242–246).
go back to reference Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., & Chklovskii, D. (2009). Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12,536–12,541.CrossRef Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., & Chklovskii, D. (2009). Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12,536–12,541.CrossRef
go back to reference White, E. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. structure, function and theory. Boston: Birkhauser. White, E. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. structure, function and theory. Boston: Birkhauser.
go back to reference Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83.CrossRef Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83.CrossRef
go back to reference Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews. Neuroscience, 5, 24–34.PubMedCrossRef Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews. Neuroscience, 5, 24–34.PubMedCrossRef
Metadata
Title
Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks
Authors
Pedro L. López-Cruz
Concha Bielza
Pedro Larrañaga
Ruth Benavides-Piccione
Javier DeFelipe
Publication date
01-12-2011
Publisher
Springer-Verlag
Published in
Neuroinformatics / Issue 4/2011
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-011-9103-4

Other articles of this Issue 4/2011

Neuroinformatics 4/2011 Go to the issue

Premium Partner