Skip to main content
Erschienen in: Neuroinformatics 4/2008

01.12.2008

Non-parametric Algorithmic Generation of Neuronal Morphologies

verfasst von: Benjamin Torben-Nielsen, Stijn Vanderlooy, Eric O. Postma

Erschienen in: Neuroinformatics | Ausgabe 4/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generation algorithms allow for the generation of Virtual Neurons (VNs) from a small set of morphological properties. The set describes the morphological properties of real neurons in terms of statistical descriptors such as the number of branches and segment lengths (among others). The majority of reconstruction algorithms use the observed properties to estimate the parameters of a priori fixed probability distributions in order to construct statistical descriptors that fit well with the observed data. In this article, we present a non-parametric generation algorithm based on kernel density estimators (KDEs). The new algorithm is called KDE-Neuron and has three advantages over parametric reconstruction algorithms: (1) no a priori specifications about the distributions underlying the real data, (2) peculiarities in the biological data will be reflected in the VNs, and (3) ability to reconstruct different cell types. We experimentally generated motor neurons and granule cells, and statistically validated the obtained results. Moreover, we assessed the quality of the prototype data set and observed that our generated neurons are as good as the prototype data in terms of the used statistical descriptors. The opportunities and limitations of data-driven algorithmic reconstruction of neurons are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For the sake of readability, ‘generation’ and ‘reconstruction’ are used as synonyms in the remainder of the text.
 
2
Mathematical details related to this section can be found in the Appendix.
 
3
More advanced methods (in efficiency and effectivity) are possible but this is not the focus in the current work. We refer the interested reader to Ch. 11 of Bishop (2006)
 
4
To avoid a pre-processing step, we directly work with compartments that are specified in the SWC format, rather than with segments.
 
5
Outnumbering occurs because every bifurcation compartment is surrounded by prolongating compartments, and terminating compartments are always preluded by prolongating compartments.
 
6
We selected the options in a simple manner by trying out a few different settings in preliminary experiments. So, even though we will show good results with these options, there is still space for more fine-tuning. A grid search over the options can for example be used for an extensive parameter search.
 
7
Electrophysiological simulations are more precise when an odd number of compartments is used (Carnevale and Hines 2006).
 
8
The low number of filtered neurons can be attributed to the fixed distribution of branching angles because, in order to pass the filter, a particular sequence of branch angles and segments lengths is required. For instance, the filter tests the Euclidean distance between soma and terminal tips, which is entirely defined by the angles and lengths of a branch.
 
Literatur
Zurück zum Zitat Alpaydin, E. (2004). Introduction to machine learning. Cambridge, MA: MIT Press. Alpaydin, E. (2004). Introduction to machine learning. Cambridge, MA: MIT Press.
Zurück zum Zitat Ambros-Ingerson, J., & Holmes, W. R. (2005). Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus, 15, 302–315.PubMedCrossRef Ambros-Ingerson, J., & Holmes, W. R. (2005). Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus, 15, 302–315.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A. (1999). Progress and perspectives in computational neuroanatomy. Anatomical Record, 257, 195–207.PubMedCrossRef Ascoli, G. A. (1999). Progress and perspectives in computational neuroanatomy. Anatomical Record, 257, 195–207.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: The case of neuronal morphologies. Nature Neuroscience Reviews, 318(7), 318–324.CrossRef Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: The case of neuronal morphologies. Nature Neuroscience Reviews, 318(7), 318–324.CrossRef
Zurück zum Zitat Ascoli, G. A. (2007). Success and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef Ascoli, G. A. (2007). Success and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A., & Krichmar, J. L., (2000). L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef Ascoli, G. A., & Krichmar, J. L., (2000). L-Neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef
Zurück zum Zitat Ascoli, G. A., Krichmar, J. L., Scorcioni, R., Nasuto, S. J., & Senft, S. L. (2001). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.PubMedCrossRef Ascoli, G. A., Krichmar, J. L., Scorcioni, R., Nasuto, S. J., & Senft, S. L. (2001). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.PubMedCrossRef
Zurück zum Zitat Bishop, C. (2006). Pattern recognition and machine learning. New York, NY: Springer-Verlag. Bishop, C. (2006). Pattern recognition and machine learning. New York, NY: Springer-Verlag.
Zurück zum Zitat Burke, R., Marks, W., & Ulfhake, B. (1992). A parsimonious description of motorneuron dendritic morphology using computer simulation. Journal of Neuroscience, 12(6), 2403–2416.PubMed Burke, R., Marks, W., & Ulfhake, B. (1992). A parsimonious description of motorneuron dendritic morphology using computer simulation. Journal of Neuroscience, 12(6), 2403–2416.PubMed
Zurück zum Zitat Burns, G. (2001). Knowledge management of the neuroscientific literature: The data model of the neuroscholar system. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1187–1208.PubMedCrossRef Burns, G. (2001). Knowledge management of the neuroscientific literature: The data model of the neuroscholar system. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1187–1208.PubMedCrossRef
Zurück zum Zitat Cameron, W., He, F., Kalipatnapu, P., Jodkowski, J., & Guthrie, R. (1991). Morphometric analysis of phrenic motoneurons in the cat during postnatal development. Journal of Comparative Neurology, 314(4), 763–776.PubMedCrossRef Cameron, W., He, F., Kalipatnapu, P., Jodkowski, J., & Guthrie, R. (1991). Morphometric analysis of phrenic motoneurons in the cat during postnatal development. Journal of Comparative Neurology, 314(4), 763–776.PubMedCrossRef
Zurück zum Zitat Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54.PubMedCrossRef Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54.PubMedCrossRef
Zurück zum Zitat Carnevale, N., & Hines, M. (2006). The NEURON Book. Cambridge, UK: Cambridge University Press. Carnevale, N., & Hines, M. (2006). The NEURON Book. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat da F. Costa, L., Barbosa, M., & Coupez, V. (2005). On the potential of the excluded volume and autocorrelation as neuromorphometric descriptors. Physica A: Statistical Mechanics and its Applications, 348, 317–326.CrossRef da F. Costa, L., Barbosa, M., & Coupez, V. (2005). On the potential of the excluded volume and autocorrelation as neuromorphometric descriptors. Physica A: Statistical Mechanics and its Applications, 348, 317–326.CrossRef
Zurück zum Zitat De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar purkinje cell I. simulation of current clamps in slice. Journal of Neurophysiology, 71(1), 375–400.PubMed De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar purkinje cell I. simulation of current clamps in slice. Journal of Neurophysiology, 71(1), 375–400.PubMed
Zurück zum Zitat Devroye, L. (1986). Non-Uniform Random Variate Generation. New York, NY: Springer-Verlag. Devroye, L. (1986). Non-Uniform Random Variate Generation. New York, NY: Springer-Verlag.
Zurück zum Zitat Donohue, D. E., & Ascoli, G. A. (2005). Local diameter fully constraints dendritic size in basal but not apical trees of ca1 pyramidal neurons. Journal of Computational Neuroscience, 19, 223–238.PubMedCrossRef Donohue, D. E., & Ascoli, G. A. (2005). Local diameter fully constraints dendritic size in basal but not apical trees of ca1 pyramidal neurons. Journal of Computational Neuroscience, 19, 223–238.PubMedCrossRef
Zurück zum Zitat Eberhard, J., Wanner, A., & Wittum, G. (2007). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D. Neurocomputing, 70(1–3), 327–342. Eberhard, J., Wanner, A., & Wittum, G. (2007). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D. Neurocomputing, 70(1–3), 327–342.
Zurück zum Zitat Feng, N., Ning, G., & Zheng, X. (2005). A framework for simulating axon guidance. Neurocomputing, 68, 70–84.CrossRef Feng, N., Ning, G., & Zheng, X. (2005). A framework for simulating axon guidance. Neurocomputing, 68, 70–84.CrossRef
Zurück zum Zitat Fernández, E., & Jelinek, H. F. (2001). Use of fractal theory in neuroscience: Methods, advantages and potential problems. Methods, 24, 309–321.PubMedCrossRef Fernández, E., & Jelinek, H. F. (2001). Use of fractal theory in neuroscience: Methods, advantages and potential problems. Methods, 24, 309–321.PubMedCrossRef
Zurück zum Zitat Glaser, J., & Glaser, E. (1990). Neuron imaging with Neurolucida - a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14, 307–317.PubMedCrossRef Glaser, J., & Glaser, E. (1990). Neuron imaging with Neurolucida - a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14, 307–317.PubMedCrossRef
Zurück zum Zitat Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form, volume The neurosciences, Fourth Study Program, chapter 27. Cambridge, MA: The MIT Press. Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form, volume The neurosciences, Fourth Study Program, chapter 27. Cambridge, MA: The MIT Press.
Zurück zum Zitat Horch, H. W., & Katz, L. C. (2002). Bdnf release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci, 5(11), 1177–1184.PubMedCrossRef Horch, H. W., & Katz, L. C. (2002). Bdnf release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci, 5(11), 1177–1184.PubMedCrossRef
Zurück zum Zitat Jones, C., Marron, J., & Sheather, S. (1996). A brief survey of bandwidth selection for density estimation. Journal of American Statistical Association, 91(433), 401–407.CrossRef Jones, C., Marron, J., & Sheather, S. (1996). A brief survey of bandwidth selection for density estimation. Journal of American Statistical Association, 91(433), 401–407.CrossRef
Zurück zum Zitat Kaspirzhny, A. V., Gogan, P., Horcholle-Bossavit, G., & Tyc-Dumont, S. (2002). Neuronal morphology data bases: Morphological noise and assessment of data quality. Network: Computation in Neural Systems, 13, 357–380.CrossRef Kaspirzhny, A. V., Gogan, P., Horcholle-Bossavit, G., & Tyc-Dumont, S. (2002). Neuronal morphology data bases: Morphological noise and assessment of data quality. Network: Computation in Neural Systems, 13, 357–380.CrossRef
Zurück zum Zitat Lehmann, E., & Romano, J. (2006). Testing statistical hypotheses (3rd ed.). Springer-Verlag, Berlin Heidelberg. Lehmann, E., & Romano, J. (2006). Testing statistical hypotheses (3rd ed.). Springer-Verlag, Berlin Heidelberg.
Zurück zum Zitat Lien, J.-M., Morales, M., & Amato, N. M. (2003). Neuron PRM: A framework for constructing cortical networks. Neurocomputing, 52–54, 191–197.CrossRef Lien, J.-M., Morales, M., & Amato, N. M. (2003). Neuron PRM: A framework for constructing cortical networks. Neurocomputing, 52–54, 191–197.CrossRef
Zurück zum Zitat Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef
Zurück zum Zitat Loader, C. (1999). Bandwidth selection: Classical or plug-in? The Annals of Statistics, 27(2), 451–438.CrossRef Loader, C. (1999). Bandwidth selection: Classical or plug-in? The Annals of Statistics, 27(2), 451–438.CrossRef
Zurück zum Zitat Luczak, A. (2006). Spatial embedding of neuron trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef Luczak, A. (2006). Spatial embedding of neuron trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef
Zurück zum Zitat Myatt, D., Hadlington, T., Ascoli, G., & Nasuto, S. (2007). Inter-user variability of semi-manually reconstructed dendritic trees with the freeware tool neuromantic. Journal of Microscopy, (submitted). Myatt, D., Hadlington, T., Ascoli, G., & Nasuto, S. (2007). Inter-user variability of semi-manually reconstructed dendritic trees with the freeware tool neuromantic. Journal of Microscopy, (submitted).
Zurück zum Zitat Neapolitan, R. E. (2003). Learning bayesian networks. Prentice Hall. Neapolitan, R. E. (2003). Learning bayesian networks. Prentice Hall.
Zurück zum Zitat Nowakowski, R. S., Hayes, N. S., & Egger, M. D. (1992). Competitive interactions during dendritic growth: A simple stochastic growth algorithm. Brain Research, 576, 152–156.PubMedCrossRef Nowakowski, R. S., Hayes, N. S., & Egger, M. D. (1992). Competitive interactions during dendritic growth: A simple stochastic growth algorithm. Brain Research, 576, 152–156.PubMedCrossRef
Zurück zum Zitat Parzen, E. (1962). On estimation of probability density function and mode. Annals of Mathematical Statistics, 33(3), 1065–1076.CrossRef Parzen, E. (1962). On estimation of probability density function and mode. Annals of Mathematical Statistics, 33(3), 1065–1076.CrossRef
Zurück zum Zitat Raykar, V., & Duraiswami, R. (2006). Very fast optimal bandwidth selection for univariate kernel density estimation. Technical Report CS-TR-4774, University of Maryland, College Park. Raykar, V., & Duraiswami, R. (2006). Very fast optimal bandwidth selection for univariate kernel density estimation. Technical Report CS-TR-4774, University of Maryland, College Park.
Zurück zum Zitat Rihn, L., & Claiborne, B. (1990). Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Research. Developmental Brain Research, 54(1), 115–124.PubMedCrossRef Rihn, L., & Claiborne, B. (1990). Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Research. Developmental Brain Research, 54(1), 115–124.PubMedCrossRef
Zurück zum Zitat Robert, C. (2007). The Bayesian Choice: From decision-theoretic foundations to computational Implementation. New York, NY: Springer-Verlag. Robert, C. (2007). The Bayesian Choice: From decision-theoretic foundations to computational Implementation. New York, NY: Springer-Verlag.
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71, 173–187.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71, 173–187.PubMedCrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2005a). Algortihmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 65–66, 253–260.CrossRef Samsonovich, A. V., & Ascoli, G. A. (2005a). Algortihmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 65–66, 253–260.CrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2005b). Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden markov model. Hippocampus, 15, 166–183.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2005b). Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden markov model. Hippocampus, 15, 166–183.PubMedCrossRef
Zurück zum Zitat Scorcioni, R., Lazarewicz, M. T., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal Comparative Neurology, 473, 177–193.CrossRef Scorcioni, R., Lazarewicz, M. T., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal Comparative Neurology, 473, 177–193.CrossRef
Zurück zum Zitat Scott, D. (1992). Multivariate density estimation: theory, practice, and visualization. New York, NY: John Wiley and Sons Inc. Scott, D. (1992). Multivariate density estimation: theory, practice, and visualization. New York, NY: John Wiley and Sons Inc.
Zurück zum Zitat Scott, E., & Luo, L. (2001). How do dendrites take their shape? Nature (neuroscience), 4(4), 359–365.CrossRef Scott, E., & Luo, L. (2001). How do dendrites take their shape? Nature (neuroscience), 4(4), 359–365.CrossRef
Zurück zum Zitat Silverman, B. (1986). Density estimation for statistics and data analysis. London, UK: Chapman and Hall. Silverman, B. (1986). Density estimation for statistics and data analysis. London, UK: Chapman and Hall.
Zurück zum Zitat Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef
Zurück zum Zitat Szilágyi, T., & De Schutter, E. (2004). Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: a comparison of three internet archives. European Journal of Neuroscience, 19, 1257–1266.PubMedCrossRef Szilágyi, T., & De Schutter, E. (2004). Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: a comparison of three internet archives. European Journal of Neuroscience, 19, 1257–1266.PubMedCrossRef
Zurück zum Zitat Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, Mass: Oxford University Press. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, Mass: Oxford University Press.
Zurück zum Zitat Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008). Evol-neuron: Virtual neuron generation. Neurocomputing, 71(4–6), 963–972.CrossRef Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008). Evol-neuron: Virtual neuron generation. Neurocomputing, 71(4–6), 963–972.CrossRef
Zurück zum Zitat van Pelt, J., & Schierwagen, A. (2004). Morphological analysis and modeling of neuronal dendrites. Mathematical Biosciences, 188, 147–155.PubMedCrossRef van Pelt, J., & Schierwagen, A. (2004). Morphological analysis and modeling of neuronal dendrites. Mathematical Biosciences, 188, 147–155.PubMedCrossRef
Zurück zum Zitat Wand, M., & Jones, C. (1995). Kernel smoothing. London, UK: Chapman and Hall. Wand, M., & Jones, C. (1995). Kernel smoothing. London, UK: Chapman and Hall.
Zurück zum Zitat Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques (2nd ed.). San Francisco, CA: Morgan Kaufmann. Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques (2nd ed.). San Francisco, CA: Morgan Kaufmann.
Metadaten
Titel
Non-parametric Algorithmic Generation of Neuronal Morphologies
verfasst von
Benjamin Torben-Nielsen
Stijn Vanderlooy
Eric O. Postma
Publikationsdatum
01.12.2008
Verlag
Humana Press Inc
Erschienen in
Neuroinformatics / Ausgabe 4/2008
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-008-9026-x

Premium Partner