Skip to main content
Erschienen in: Neuroinformatics 3/2007

01.09.2007

Successes and Rewards in Sharing Digital Reconstructions of Neuronal Morphology

verfasst von: Giorgio A. Ascoli

Erschienen in: Neuroinformatics | Ausgabe 3/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The computer-assisted three-dimensional reconstruction of neuronal morphology is becoming an increasingly popular technique to quantify the arborization patterns of dendrites and axons. The resulting digital files are suitable for comprehensive morphometric analyses as well as for building anatomically realistic compartmental models of membrane biophysics and neuronal electrophysiology. The digital tracings acquired in a lab for a specific purpose can be often re-used by a different research group to address a completely unrelated scientific question, if the original investigators are willing to share the data. Since reconstructing neuronal morphology is a labor-intensive process, data sharing and re-analysis is particularly advantageous for the neuroscience and biomedical communities. Here we present numerous cases of “success stories” in which digital reconstructions of neuronal morphology were shared and re-used, leading to additional, independent discoveries and publications, and thus amplifying the impact of the “source” study for which the data set was first collected. In particular, we overview four main applications of this kind of data: comparative morphometric analyses, statistical estimation of potential synaptic connectivity, morphologically accurate electrophysiological simulations, and computational models of neuronal shape and development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ambros-Ingerson, J., & Holmes, W. R. (2005). Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus, 15, 302–315.PubMedCrossRef Ambros-Ingerson, J., & Holmes, W. R. (2005). Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus, 15, 302–315.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A. (2002). Neuroanatomical algorithms for dendritic modeling. Network: Computation in Neural Systems, 13, 247–260.CrossRef Ascoli, G. A. (2002). Neuroanatomical algorithms for dendritic modeling. Network: Computation in Neural Systems, 13, 247–260.CrossRef
Zurück zum Zitat Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 7, 318–324.PubMedCrossRef Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 7, 318–324.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A., Krichmar, J. L., Scorcioni, R., Nasuto, S., & Senft, S. L. (2001). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy Embryology, 204, 283–301.CrossRef Ascoli, G. A., Krichmar, J. L., Scorcioni, R., Nasuto, S., & Senft, S. L. (2001). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy Embryology, 204, 283–301.CrossRef
Zurück zum Zitat Bannister, N. J., & Larkman, A. U. (1995). Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus. I. Branching patterns. Journal of Comparative Neurology, 360, 150–160.PubMedCrossRef Bannister, N. J., & Larkman, A. U. (1995). Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus. I. Branching patterns. Journal of Comparative Neurology, 360, 150–160.PubMedCrossRef
Zurück zum Zitat Burke, R. E., Marks, W. B., & Ulfhake, B. (1992). A parsimonious description of motoneuron dendritic morphology using computer simulation. Journal of Neuroscience, 12, 2403–2416.PubMed Burke, R. E., Marks, W. B., & Ulfhake, B. (1992). A parsimonious description of motoneuron dendritic morphology using computer simulation. Journal of Neuroscience, 12, 2403–2416.PubMed
Zurück zum Zitat Cannon, R. C., Wheal, H. V., & Turner, D. A. (1999). Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. Journal of Comparative Neurology, 413, 619–633.PubMedCrossRef Cannon, R. C., Wheal, H. V., & Turner, D. A. (1999). Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. Journal of Comparative Neurology, 413, 619–633.PubMedCrossRef
Zurück zum Zitat Carnevale, N. T., Tsai, K. Y., Claiborne, B. J., & Brown, T. H. (1997). Comparative electrotonic analysis of three classes of rat hippocampal neurons. Journal of Neurophysiology, 78, 703–720.PubMed Carnevale, N. T., Tsai, K. Y., Claiborne, B. J., & Brown, T. H. (1997). Comparative electrotonic analysis of three classes of rat hippocampal neurons. Journal of Neurophysiology, 78, 703–720.PubMed
Zurück zum Zitat Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: Two sides of the same coin. Neuron, 43, 609–617.PubMed Chklovskii, D. B. (2004). Synaptic connectivity and neuronal morphology: Two sides of the same coin. Neuron, 43, 609–617.PubMed
Zurück zum Zitat Costa, L. F., & Manoel, E. T. M. (2003). A percolation approach to neural morphometry and connectivity. Neuroinformatics, 1, 65–80.CrossRef Costa, L. F., & Manoel, E. T. M. (2003). A percolation approach to neural morphometry and connectivity. Neuroinformatics, 1, 65–80.CrossRef
Zurück zum Zitat Costa, L. F., & Velte, T. J. (1999). Automatic characterization and classification of ganglion cells from the salamander retina. Journal of Comparative Neurology, 404, 33–51.CrossRef Costa, L. F., & Velte, T. J. (1999). Automatic characterization and classification of ganglion cells from the salamander retina. Journal of Comparative Neurology, 404, 33–51.CrossRef
Zurück zum Zitat Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics (in press). Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics (in press).
Zurück zum Zitat Cullheim, S., Fleshman, J. W., Glenn, L. L., & Burke, R. E. (1987). Membrane area and dendritic structure in type-identified triceps surae alphamotoneurons. Journal of Comparative Neurology, 255, 68–81.PubMedCrossRef Cullheim, S., Fleshman, J. W., Glenn, L. L., & Burke, R. E. (1987). Membrane area and dendritic structure in type-identified triceps surae alphamotoneurons. Journal of Comparative Neurology, 255, 68–81.PubMedCrossRef
Zurück zum Zitat De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. Journal of Neurophysiology, 71, 375–419.PubMed De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. Journal of Neurophysiology, 71, 375–419.PubMed
Zurück zum Zitat Donohue, D., & Ascoli, G. A. (2005a). Models of neuronal outgrowth. In: S. H. Koslow, & Subramaniam, S. (Eds). Databasing the brain: From data to knowledge New York, NY: Wiley. Donohue, D., & Ascoli, G. A. (2005a). Models of neuronal outgrowth. In: S. H. Koslow, & Subramaniam, S. (Eds). Databasing the brain: From data to knowledge New York, NY: Wiley.
Zurück zum Zitat Donohue, D. E., & Ascoli, G. A. (2005b). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19, 223–238.PubMedCrossRef Donohue, D. E., & Ascoli, G. A. (2005b). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19, 223–238.PubMedCrossRef
Zurück zum Zitat Duan, H. L., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., & Hof, P. R. (2003). Age-related dendritic andspine changes in corticocortically projecting neurons in macaque monkeys. Cerebral Cortex, 13, 950–961.PubMedCrossRef Duan, H. L., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., & Hof, P. R. (2003). Age-related dendritic andspine changes in corticocortically projecting neurons in macaque monkeys. Cerebral Cortex, 13, 950–961.PubMedCrossRef
Zurück zum Zitat Eckersley, P., et al. (2003). Neuroscience data and tool sharing: A legal and policy framework for neuroinformatics. Neuroinformatics, 1, 149–165.PubMedCrossRef Eckersley, P., et al. (2003). Neuroscience data and tool sharing: A legal and policy framework for neuroinformatics. Neuroinformatics, 1, 149–165.PubMedCrossRef
Zurück zum Zitat Fohlmeister, J. F., & Miller, R. F. (1997). Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. Journal of Neurophysiology, 78, 1935–1947.PubMed Fohlmeister, J. F., & Miller, R. F. (1997). Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. Journal of Neurophysiology, 78, 1935–1947.PubMed
Zurück zum Zitat Gardner, D., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1, 289–295.PubMedCrossRef Gardner, D., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1, 289–295.PubMedCrossRef
Zurück zum Zitat Geschwind, D. H. (2001). Sharing gene expression data: an array of options. Nature Reviews Neuroscience, 2, 435–438.PubMedCrossRef Geschwind, D. H. (2001). Sharing gene expression data: an array of options. Nature Reviews Neuroscience, 2, 435–438.PubMedCrossRef
Zurück zum Zitat Henze, D. A., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef Henze, D. A., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. Journal of Comparative Neurology, 369, 331–344.PubMedCrossRef
Zurück zum Zitat Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRef Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRef
Zurück zum Zitat Insel, T. R., Volkow, N. D., Li, T. K., Battey, J. F., & Landis, S. C. (2003). Neuroscience networks: Data-sharing in an information age. PLoS Biology, 1, e17.CrossRef Insel, T. R., Volkow, N. D., Li, T. K., Battey, J. F., & Landis, S. C. (2003). Neuroscience networks: Data-sharing in an information age. PLoS Biology, 1, e17.CrossRef
Zurück zum Zitat Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. Journal Comparative Neurology, 362, 17–45.PubMedCrossRef Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. Journal Comparative Neurology, 362, 17–45.PubMedCrossRef
Zurück zum Zitat Jacobs, G. A., & Theunissen, F. (1996). Functional organization of a neural map in the cricket cercal sensory system. Journal of Neuroscience, 16, 769–784.PubMed Jacobs, G. A., & Theunissen, F. (1996). Functional organization of a neural map in the cricket cercal sensory system. Journal of Neuroscience, 16, 769–784.PubMed
Zurück zum Zitat Jaeger, D. (2000). Accurate reconstruction of neuronal morphology. In: E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 159–178). Boca Raton, FL: CRC. Jaeger, D. (2000). Accurate reconstruction of neuronal morphology. In: E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 159–178). Boca Raton, FL: CRC.
Zurück zum Zitat Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell, 128, 1187–1203.PubMedCrossRef Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell, 128, 1187–1203.PubMedCrossRef
Zurück zum Zitat Kalisman, N., Silberberg, G., & Markram, H. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88, 210–218.PubMedCrossRef Kalisman, N., Silberberg, G., & Markram, H. (2003). Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 88, 210–218.PubMedCrossRef
Zurück zum Zitat Koslow, S. H. (2000). Should the neuroscience community make a paradigm shift to sharing primary data?. Nature Neuroscience, 3, 863–865.PubMedCrossRef Koslow, S. H. (2000). Should the neuroscience community make a paradigm shift to sharing primary data?. Nature Neuroscience, 3, 863–865.PubMedCrossRef
Zurück zum Zitat Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature Reviews Neuroscience, 3, 311–313.PubMedCrossRef Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature Reviews Neuroscience, 3, 311–313.PubMedCrossRef
Zurück zum Zitat Krichmar, J. L., Nasuto, S., Scorcioni, R., Washington, S., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 941, 11–28.PubMedCrossRef Krichmar, J. L., Nasuto, S., Scorcioni, R., Washington, S., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Research, 941, 11–28.PubMedCrossRef
Zurück zum Zitat Li, X., & Ascoli, G. A. (2006). Computational simulation of the input–output relationship in hippocampal pyramidal cells. Journal of Computational Neuroscience, 21, 191–209.PubMedCrossRef Li, X., & Ascoli, G. A. (2006). Computational simulation of the input–output relationship in hippocampal pyramidal cells. Journal of Computational Neuroscience, 21, 191–209.PubMedCrossRef
Zurück zum Zitat Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Bioscience, 205, 271–296.CrossRef Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Bioscience, 205, 271–296.CrossRef
Zurück zum Zitat Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRef
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef Mainen, Z. F., & Sejnowski, T. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef
Zurück zum Zitat Marks, W. B., & Burke R. E. (2007). Simulation of motoneuron morphology in three dimensions. Journal of Comparative Neurology, 503, 685–716.PubMedCrossRef Marks, W. B., & Burke R. E. (2007). Simulation of motoneuron morphology in three dimensions. Journal of Comparative Neurology, 503, 685–716.PubMedCrossRef
Zurück zum Zitat Megias, M., Emri, Z., Freund, T. F., & Gulyas, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.PubMedCrossRef Megias, M., Emri, Z., Freund, T. F., & Gulyas, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.PubMedCrossRef
Zurück zum Zitat Migliore, M., Ferrante, M., & Ascoli, G. A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. Journal of Neurophysiology, 94:4145–4155.PubMedCrossRef Migliore, M., Ferrante, M., & Ascoli, G. A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. Journal of Neurophysiology, 94:4145–4155.PubMedCrossRef
Zurück zum Zitat Mott, D. D., Turner, D. A., Okazaki, M. M., & Lewis, D. V. (1997). Interneurons of the dentate-hilus border of the rat dentate gyrus: Morphological and electrophysiological heterogeneity. Journal of Neuroscience, 17, 3990–4005.PubMed Mott, D. D., Turner, D. A., Okazaki, M. M., & Lewis, D. V. (1997). Interneurons of the dentate-hilus border of the rat dentate gyrus: Morphological and electrophysiological heterogeneity. Journal of Neuroscience, 17, 3990–4005.PubMed
Zurück zum Zitat Olave, M. J., Puri, N., Kerr, R., & Maxwell, D. J. (2002). Myelinated and unmyelinated primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal horn. Experimental Brain Research, 145, 448–456.CrossRef Olave, M. J., Puri, N., Kerr, R., & Maxwell, D. J. (2002). Myelinated and unmyelinated primary afferent axons form contacts with cholinergic interneurons in the spinal dorsal horn. Experimental Brain Research, 145, 448–456.CrossRef
Zurück zum Zitat Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing detailed research data is associated with increased citation rate. PLoS One, 2(3), e308.PubMedCrossRef Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing detailed research data is associated with increased citation rate. PLoS One, 2(3), e308.PubMedCrossRef
Zurück zum Zitat Pyapali, G. K., Sik, A., Penttonen, M., Buzsaki, G., & Turner, D. A. (1998). Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro. Journal of Comparative Neurology, 391, 335–352.PubMedCrossRef Pyapali, G. K., Sik, A., Penttonen, M., Buzsaki, G., & Turner, D. A. (1998). Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro. Journal of Comparative Neurology, 391, 335–352.PubMedCrossRef
Zurück zum Zitat Pyapali, G. K., & Turner, D. A. (1994). Denervation-induced dendritic alterations in CA1 pyramidal cells following kainic acid hippocampal lesions in rats. Brain Research, 652, 279–290.PubMedCrossRef Pyapali, G. K., & Turner, D. A. (1994). Denervation-induced dendritic alterations in CA1 pyramidal cells following kainic acid hippocampal lesions in rats. Brain Research, 652, 279–290.PubMedCrossRef
Zurück zum Zitat Pyapali, G. K., & Turner, D. A. (1996). Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats. Neurobiology of Aging, 17, 601–611.PubMedCrossRef Pyapali, G. K., & Turner, D. A. (1996). Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats. Neurobiology of Aging, 17, 601–611.PubMedCrossRef
Zurück zum Zitat Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology, and detailed passive models of guinea-pig cerebellar Purkinje cells. Journal of Physiology, 474, 101–108.PubMed Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology, and detailed passive models of guinea-pig cerebellar Purkinje cells. Journal of Physiology, 474, 101–108.PubMed
Zurück zum Zitat Rihn, L. L., & Claiborne, B. J. (1990). Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Research, Developmental Brain Research, 54, 115–124.CrossRef Rihn, L. L., & Claiborne, B. J. (1990). Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Research, Developmental Brain Research, 54, 115–124.CrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates selective repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71, 173–187.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates selective repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71, 173–187.PubMedCrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2005a). Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus, 15, 166–183.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2005a). Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus, 15, 166–183.PubMedCrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2005b). Algorithmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 65–66, 253–260.CrossRef Samsonovich, A. V., & Ascoli, G. A. (2005b). Algorithmic description of hippocampal granule cell dendritic morphology. Neurocomputing, 65–66, 253–260.CrossRef
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2006). Morphological homeostasis in cortical dendrites. PNAS, 103, 1569–1574.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2006). Morphological homeostasis in cortical dendrites. PNAS, 103, 1569–1574.PubMedCrossRef
Zurück zum Zitat Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89, 3143–3154.PubMedCrossRef Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89, 3143–3154.PubMedCrossRef
Zurück zum Zitat Scorcioni, R., Bouteiller, J., & Ascoli, G. A. (2002). A real-scale anatomical model of the dentate gyrus based on single cell reconstructions and 3D rendering of a brain atlas. Neurocomputing, 44–46, 629–634.CrossRef Scorcioni, R., Bouteiller, J., & Ascoli, G. A. (2002). A real-scale anatomical model of the dentate gyrus based on single cell reconstructions and 3D rendering of a brain atlas. Neurocomputing, 44–46, 629–634.CrossRef
Zurück zum Zitat Scorcioni, R., Lazarewicz, M., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal of Comparative Neurology, 473, 177–193.PubMedCrossRef Scorcioni, R., Lazarewicz, M., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal of Comparative Neurology, 473, 177–193.PubMedCrossRef
Zurück zum Zitat Shepherd, G. M., Stepanyants, A., Bureau, I., Chklovskii, D., & Svoboda, K. (2005). Geometric and functional organization of cortical circuits. Nature Neuroscience, 8, 782–790.PubMedCrossRef Shepherd, G. M., Stepanyants, A., Bureau, I., Chklovskii, D., & Svoboda, K. (2005). Geometric and functional organization of cortical circuits. Nature Neuroscience, 8, 782–790.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., & Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28, 387–394.PubMedCrossRef Stepanyants, A., & Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28, 387–394.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2007). Local potential connectivity in cat primary visual cortex. Cerebral Cortex (in press). Stepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2007). Local potential connectivity in cat primary visual cortex. Cerebral Cortex (in press).
Zurück zum Zitat Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34, 275–288.PubMedCrossRef Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34, 275–288.PubMedCrossRef
Zurück zum Zitat Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRef
Zurück zum Zitat Szilagyi, T., De Schutter, E. (2004). Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: A comparison of three Internet archives. European Journal of Neuroscience, 19, 1257–1266.PubMedCrossRef Szilagyi, T., De Schutter, E. (2004). Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: A comparison of three Internet archives. European Journal of Neuroscience, 19, 1257–1266.PubMedCrossRef
Zurück zum Zitat Toris, C. B., Eiesland, J. L., & Miller, R. F. (1995). Morphology of ganglion cells in the neotenous tiger salamander retina. Journal of Comparative Neurology, 352, 535–559.PubMedCrossRef Toris, C. B., Eiesland, J. L., & Miller, R. F. (1995). Morphology of ganglion cells in the neotenous tiger salamander retina. Journal of Comparative Neurology, 352, 535–559.PubMedCrossRef
Zurück zum Zitat Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsaki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. Journal of Comparative Neurology, 356, 580–594.PubMedCrossRef Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsaki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. Journal of Comparative Neurology, 356, 580–594.PubMedCrossRef
Zurück zum Zitat Van Ooyen, A., Van Pelt, J. (2002). Competition in neuronal morphogenesis and the development of nerve connections. In: Ascoli, G. A, (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana. Van Ooyen, A., Van Pelt, J. (2002). Competition in neuronal morphogenesis and the development of nerve connections. In: Ascoli, G. A, (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana.
Zurück zum Zitat Vetter, P., Roth, A., & Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.PubMed Vetter, P., Roth, A., & Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.PubMed
Metadaten
Titel
Successes and Rewards in Sharing Digital Reconstructions of Neuronal Morphology
verfasst von
Giorgio A. Ascoli
Publikationsdatum
01.09.2007
Verlag
Humana Press Inc
Erschienen in
Neuroinformatics / Ausgabe 3/2007
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-007-0010-7

Weitere Artikel der Ausgabe 3/2007

Neuroinformatics 3/2007 Zur Ausgabe

Premium Partner