Skip to main content
Erschienen in: Neuroinformatics 4/2011

01.12.2011

Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks

verfasst von: Pedro L. López-Cruz, Concha Bielza, Pedro Larrañaga, Ruth Benavides-Piccione, Javier DeFelipe

Erschienen in: Neuroinformatics | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback–Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term “database” refers to the sets of 3D reconstructions of basal dendrites from each of the three cortical areas. The term “dataset” is used to refer to the values of the variables measured for each pair of sibling segments in those reconstructions.
 
Literatur
Zurück zum Zitat Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2009). An approach to capturing neuron morphological diversity. In E. De Schutter (Ed.), Computational modeling methods for neuroscientists (pp. 211–232). The MIT Press. Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2009). An approach to capturing neuron morphological diversity. In E. De Schutter (Ed.), Computational modeling methods for neuroscientists (pp. 211–232). The MIT Press.
Zurück zum Zitat Ascoli, G. A. (2007). Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef Ascoli, G. A. (2007). Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A., & Krichmar, J. L. (2000). L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef Ascoli, G. A., & Krichmar, J. L. (2000). L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRef
Zurück zum Zitat Ascoli, G. A., Krichmar, J. L., Nasuto, S., & Senft, S. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.PubMedCrossRef Ascoli, G. A., Krichmar, J. L., Nasuto, S., & Senft, S. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRef Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRef
Zurück zum Zitat Ascoli, G. A., Alonso-Nanclares, L., Anderson, S., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of gabaergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.PubMedCrossRef Ascoli, G. A., Alonso-Nanclares, L., Anderson, S., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of gabaergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.PubMedCrossRef
Zurück zum Zitat Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572.CrossRef Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572.CrossRef
Zurück zum Zitat Benavides-Piccione, R., Ballesteros-Yáñez, I., Martínez de Legrán, M., Elston, G., Estivill, X., Fillat, C., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.PubMedCrossRef Benavides-Piccione, R., Ballesteros-Yáñez, I., Martínez de Legrán, M., Elston, G., Estivill, X., Fillat, C., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.PubMedCrossRef
Zurück zum Zitat Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16, 990–1001.PubMedCrossRef Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16, 990–1001.PubMedCrossRef
Zurück zum Zitat Brown, K. M., Gillette, T. A., & Ascoli, G. A. (2008). Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell & Developmental Biology, 19, 485–493.CrossRef Brown, K. M., Gillette, T. A., & Ascoli, G. A. (2008). Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell & Developmental Biology, 19, 485–493.CrossRef
Zurück zum Zitat Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRef Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRef
Zurück zum Zitat Chen, J. Y. (2009). A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4), 1086–1111.CrossRef Chen, J. Y. (2009). A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4), 1086–1111.CrossRef
Zurück zum Zitat Cline, H. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.PubMedCrossRef Cline, H. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.PubMedCrossRef
Zurück zum Zitat Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347. Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
Zurück zum Zitat DeFelipe, J. (2008). The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience,, 2, 10–12.PubMedCrossRef DeFelipe, J. (2008). The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience,, 2, 10–12.PubMedCrossRef
Zurück zum Zitat DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39, 563–607.PubMedCrossRef DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39, 563–607.PubMedCrossRef
Zurück zum Zitat Devaud J. M., Quenet, B., Gascuel, J., & Masson, C. (2000). Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology, 62, 657–674.PubMedCrossRef Devaud J. M., Quenet, B., Gascuel, J., & Masson, C. (2000). Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology, 62, 657–674.PubMedCrossRef
Zurück zum Zitat Ding, B., Gentleman, R., & Carey, V. (2010). bioDist: Different distance measures. R package version 1.18.0. Ding, B., Gentleman, R., & Carey, V. (2010). bioDist: Different distance measures. R package version 1.18.0.
Zurück zum Zitat Donohue, D. E., & Ascoli, G. A. (2005a). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19(2), 223–238.PubMedCrossRef Donohue, D. E., & Ascoli, G. A. (2005a). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19(2), 223–238.PubMedCrossRef
Zurück zum Zitat Donohue, D. E., & Ascoli, G. A. (2005b). Models of neuronal outgrowth. In S. Koslow, & S. Subramaniam (Eds.), Databasing the brain: From data to knowledge (pp. 303–326). New York: Wiley. Donohue, D. E., & Ascoli, G. A. (2005b). Models of neuronal outgrowth. In S. Koslow, & S. Subramaniam (Eds.), Databasing the brain: From data to knowledge (pp. 303–326). New York: Wiley.
Zurück zum Zitat Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.CrossRef Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.CrossRef
Zurück zum Zitat Elston, G. (2007). Specializations in pyramidal cell structure during primate evolution. In J. Kaas, & T. Preuss (Eds.), Evolution of nervous systems (pp. 191–242). Academic: Oxford.CrossRef Elston, G. (2007). Specializations in pyramidal cell structure during primate evolution. In J. Kaas, & T. Preuss (Eds.), Evolution of nervous systems (pp. 191–242). Academic: Oxford.CrossRef
Zurück zum Zitat Elston, G., & Rosa, M. (1997). The occipito-parietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452.PubMedCrossRef Elston, G., & Rosa, M. (1997). The occipito-parietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452.PubMedCrossRef
Zurück zum Zitat Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39.PubMedCrossRef Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39.PubMedCrossRef
Zurück zum Zitat Feldman, M. (1984). Morphology of the neocortical pyramidal neuron. In A. Peters, & E. Jones (Eds.), Cerebral cortex. Cellular components of the cerebral cortex (Vol. 1, pp. 201–253). New York: Plenum Press. Feldman, M. (1984). Morphology of the neocortical pyramidal neuron. In A. Peters, & E. Jones (Eds.), Cerebral cortex. Cellular components of the cerebral cortex (Vol. 1, pp. 201–253). New York: Plenum Press.
Zurück zum Zitat Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (UAI 96) (pp. 274–282). Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (UAI 96) (pp. 274–282).
Zurück zum Zitat Friedman, N., Goldszmith, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI 99) (pp. 196–205). Friedman, N., Goldszmith, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI 99) (pp. 196–205).
Zurück zum Zitat Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.CrossRef Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.CrossRef
Zurück zum Zitat Glaser, J., & Glaser, E. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.PubMedCrossRef Glaser, J., & Glaser, E. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.PubMedCrossRef
Zurück zum Zitat Hamilton, P. (1993). A language to describe the growth of neurites. Biological Cybernetics, 68(6), 559–565.PubMedCrossRef Hamilton, P. (1993). A language to describe the growth of neurites. Biological Cybernetics, 68(6), 559–565.PubMedCrossRef
Zurück zum Zitat Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.PubMedCrossRef Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.PubMedCrossRef
Zurück zum Zitat Heckerman, D. (1996). A tutorial on learning with Bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Corporation. Heckerman, D. (1996). A tutorial on learning with Bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Corporation.
Zurück zum Zitat Hentschel, H. G., & van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2231–2238.CrossRef Hentschel, H. G., & van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2231–2238.CrossRef
Zurück zum Zitat Heumann, H., & Wittum, G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics, 7(3), 179–190.PubMedCrossRef Heumann, H., & Wittum, G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics, 7(3), 179–190.PubMedCrossRef
Zurück zum Zitat Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). MIT Press. Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). MIT Press.
Zurück zum Zitat Jacobs, B., & Scheibel, A. (2002). Regional dendritic variation in primate cortical pyramidal cells. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 111–131). CRC Press. Jacobs, B., & Scheibel, A. (2002). Regional dendritic variation in primate cortical pyramidal cells. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 111–131). CRC Press.
Zurück zum Zitat Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.PubMedCrossRef Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.PubMedCrossRef
Zurück zum Zitat Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3, 1171–1177.PubMedCrossRef Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3, 1171–1177.PubMedCrossRef
Zurück zum Zitat Koch, C., Poggio, T., & Torres, V. (1982). Retinal ganglion cells: A functional interpretation of dendritic morphology. Proceedings of the Royal Society of London. Series B, Biological Sciences, 298(1090), 227–263. Koch, C., Poggio, T., & Torres, V. (1982). Retinal ganglion cells: A functional interpretation of dendritic morphology. Proceedings of the Royal Society of London. Series B, Biological Sciences, 298(1090), 227–263.
Zurück zum Zitat Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J., et al. (2009). Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7(3), 195–210.PubMedCrossRef Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J., et al. (2009). Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7(3), 195–210.PubMedCrossRef
Zurück zum Zitat Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Principles and techniques. The MIT Press. Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Principles and techniques. The MIT Press.
Zurück zum Zitat Krause, P. J. (1998). Learning probabilistic networks. Knowledge Engineering Review, 13(4), 321–351.CrossRef Krause, P. J. (1998). Learning probabilistic networks. Knowledge Engineering Review, 13(4), 321–351.CrossRef
Zurück zum Zitat Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.CrossRef Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.CrossRef
Zurück zum Zitat Larkman, A. (1991). Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306(2), 307–319.PubMedCrossRef Larkman, A. (1991). Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306(2), 307–319.PubMedCrossRef
Zurück zum Zitat Leray, P., & Francois, O. (2006). BNT structure learning package: Documentation and experiments. Tech. Rep. FRE CNRS 2645, Laboratoire PSI—INSA Rouen. Leray, P., & Francois, O. (2006). BNT structure learning package: Documentation and experiments. Tech. Rep. FRE CNRS 2645, Laboratoire PSI—INSA Rouen.
Zurück zum Zitat Li, G. H., & Qin, C. D. (1996). A model for neurite growth and neuronal morphogenesis. Mathematical Biosciences, 132(1), 97–110.PubMedCrossRef Li, G. H., & Qin, C. D. (1996). A model for neurite growth and neuronal morphogenesis. Mathematical Biosciences, 132(1), 97–110.PubMedCrossRef
Zurück zum Zitat Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.PubMedCrossRef
Zurück zum Zitat Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157(1), 132–141.PubMedCrossRef Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157(1), 132–141.PubMedCrossRef
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRef
Zurück zum Zitat McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10(10), 963–973.PubMedCrossRef McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10(10), 963–973.PubMedCrossRef
Zurück zum Zitat Miina, J., & Pukkala, T. (2002). Application of ecological field theory in distance-dependent growth modelling. Forest Ecology and Management, 161, 101–107.CrossRef Miina, J., & Pukkala, T. (2002). Application of ecological field theory in distance-dependent growth modelling. Forest Ecology and Management, 161, 101–107.CrossRef
Zurück zum Zitat Murphy, K. (2001). The Bayes net toolbox for Matlab. In E. Wegman, A. Braverman, A. Goodman, & P Smyth (Eds.), Computing science and statistics. Proceedings of the 33rd symposium on the interface (Vol. 33, pp. 331–350). Murphy, K. (2001). The Bayes net toolbox for Matlab. In E. Wegman, A. Braverman, A. Goodman, & P Smyth (Eds.), Computing science and statistics. Proceedings of the 33rd symposium on the interface (Vol. 33, pp. 331–350).
Zurück zum Zitat Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.
Zurück zum Zitat Pourret, O., Naïm, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. Wiley. Pourret, O., Naïm, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. Wiley.
Zurück zum Zitat R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
Zurück zum Zitat Robert, M. E., & Sweeney, J. D. (1997). Computer model: Investigating the role of filopodia-based steering in experimental neurite galvanotropism. Journal of Theoretical Biology, 188(3), 277–288.PubMedCrossRef Robert, M. E., & Sweeney, J. D. (1997). Computer model: Investigating the role of filopodia-based steering in experimental neurite galvanotropism. Journal of Theoretical Biology, 188(3), 277–288.PubMedCrossRef
Zurück zum Zitat Romero, V., Rumí, R., & Salmerón, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54–68.CrossRef Romero, V., Rumí, R., & Salmerón, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54–68.CrossRef
Zurück zum Zitat Rozenberg, G., & Salomaa, A. (1980). The mathematical theory of L-systems. New York: Academic Press. Rozenberg, G., & Salomaa, A. (1980). The mathematical theory of L-systems. New York: Academic Press.
Zurück zum Zitat Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71(2), 173–187.PubMedCrossRef Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71(2), 173–187.PubMedCrossRef
Zurück zum Zitat Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.CrossRef Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.CrossRef
Zurück zum Zitat Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4(4), 359–365.PubMedCrossRef Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4(4), 359–365.PubMedCrossRef
Zurück zum Zitat Shepherd, G. M. (ed) (2004). The synaptic organization of the brain (5th edn). Oxford University Press. Shepherd, G. M. (ed) (2004). The synaptic organization of the brain (5th edn). Oxford University Press.
Zurück zum Zitat Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9(3), 206–221.PubMedCrossRef Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9(3), 206–221.PubMedCrossRef
Zurück zum Zitat Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.CrossRef
Zurück zum Zitat Sumida, A., Terazawa, I., Togashi, A., & Komiyama, A. (2002). Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany, 82, 301–310.CrossRef Sumida, A., Terazawa, I., Togashi, A., & Komiyama, A. (2002). Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany, 82, 301–310.CrossRef
Zurück zum Zitat Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2006). Shaping realistic neuronal morphologies: An evolutionary computation method. In International joint conference on neural networks (IJCNN2006) (pp. 573–580). Vancouver, Canada. Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2006). Shaping realistic neuronal morphologies: An evolutionary computation method. In International joint conference on neural networks (IJCNN2006) (pp. 573–580). Vancouver, Canada.
Zurück zum Zitat Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2007). On the neuronal morphology-function relationship: A synthetic approach. In Knowledge discovery and emergent complexity in bioinformatics, LNBI. (Vol. 4366, pp. 135–149). Springer. Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2007). On the neuronal morphology-function relationship: A synthetic approach. In Knowledge discovery and emergent complexity in bioinformatics, LNBI. (Vol. 4366, pp. 135–149). Springer.
Zurück zum Zitat Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008a). Evol-neuron: Neuronal morphology generation. Neurocomputing, 71, 963–972.CrossRef Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008a). Evol-neuron: Neuronal morphology generation. Neurocomputing, 71, 963–972.CrossRef
Zurück zum Zitat Torben-Nielsen, B., Vanderlooy, S., & Postma, E. O. (2008b). Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6, 257–277.PubMedCrossRef Torben-Nielsen, B., Vanderlooy, S., & Postma, E. O. (2008b). Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6, 257–277.PubMedCrossRef
Zurück zum Zitat Uylings, H. B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13, 397–414.CrossRef Uylings, H. B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13, 397–414.CrossRef
Zurück zum Zitat Uylings, H. B., Ruiz-Marcos, A., & Van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience Methods, 18, 127–151.PubMedCrossRef Uylings, H. B., Ruiz-Marcos, A., & Van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience Methods, 18, 127–151.PubMedCrossRef
Zurück zum Zitat Van Pelt, J., & Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311. Van Pelt, J., & Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.
Zurück zum Zitat Van Pelt, J., & Uylings, H. B. (2005). Natural variability in the geometry of dendritic branching patterns. In G. Reeke, R. Poznanski, K. Lindsay, J. Rosenberg, & O. Sporns (Eds.), Modeling in the neurosciences: From biological systems to neuromimetic robotics (pp. 89–116). CRC Press. Van Pelt, J., & Uylings, H. B. (2005). Natural variability in the geometry of dendritic branching patterns. In G. Reeke, R. Poznanski, K. Lindsay, J. Rosenberg, & O. Sporns (Eds.), Modeling in the neurosciences: From biological systems to neuromimetic robotics (pp. 89–116). CRC Press.
Zurück zum Zitat Van Pelt, J., van Ooyen, A., & Uylings, H. B. (2001). Modeling dendritic geometry and the development of nerve connections. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 179–208). CRC Press. Van Pelt, J., van Ooyen, A., & Uylings, H. B. (2001). Modeling dendritic geometry and the development of nerve connections. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 179–208). CRC Press.
Zurück zum Zitat Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRef
Zurück zum Zitat Verwer, R., van Pelt, J., & Uylings, H. B. (1992). An introduction to topological analysis of neurones. In M Stewart (Ed.), Quantitative methods in neuroanatomy (pp. 292–323). John Wiley and Sons. Verwer, R., van Pelt, J., & Uylings, H. B. (1992). An introduction to topological analysis of neurones. In M Stewart (Ed.), Quantitative methods in neuroanatomy (pp. 292–323). John Wiley and Sons.
Zurück zum Zitat Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.PubMed Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.PubMed
Zurück zum Zitat Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vectors. In IEEE international symposium on information theory (ISIT 2006) (pp. 242–246). Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vectors. In IEEE international symposium on information theory (ISIT 2006) (pp. 242–246).
Zurück zum Zitat Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., & Chklovskii, D. (2009). Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12,536–12,541.CrossRef Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., & Chklovskii, D. (2009). Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12,536–12,541.CrossRef
Zurück zum Zitat White, E. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. structure, function and theory. Boston: Birkhauser. White, E. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. structure, function and theory. Boston: Birkhauser.
Zurück zum Zitat Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83.CrossRef Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83.CrossRef
Zurück zum Zitat Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews. Neuroscience, 5, 24–34.PubMedCrossRef Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews. Neuroscience, 5, 24–34.PubMedCrossRef
Metadaten
Titel
Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks
verfasst von
Pedro L. López-Cruz
Concha Bielza
Pedro Larrañaga
Ruth Benavides-Piccione
Javier DeFelipe
Publikationsdatum
01.12.2011
Verlag
Springer-Verlag
Erschienen in
Neuroinformatics / Ausgabe 4/2011
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-011-9103-4

Weitere Artikel der Ausgabe 4/2011

Neuroinformatics 4/2011 Zur Ausgabe

Premium Partner