Skip to main content
Top
Published in: Journal of Materials Science 18/2016

16-06-2016 | Original Paper

Molecular dynamics, conductivity and morphology of sodium deoxycholate-based poly(ester ether)urethane ionomer biomaterials

Authors: D. Filip, M. Asandulesa, D. Macocinschi, M. Aflori, S. Vlad

Published in: Journal of Materials Science | Issue 18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Broad-band dielectric spectroscopy technique was used to investigate the molecular dynamics of new sodium deoxycholate-based poly(ester ether)urethane ionomers of particular interest in biomedical devices. These polyurethane ionomers have identical hard segment containing bile salt moiety but with different soft segment chemistries. Poly(ethylene oxide)-rich soft segment promotes stronger ionic interactions and solvation capacity of ions and higher ionic conductivity in these polyurethane ionomers. The universal power law was employed to study the evolution of alternating conductivity (AC) with frequency and temperature. The calculated values of fractional exponent ranged between 0 and 1 which indicate AC conduction through hopping mechanism. Direct current conductivity evidences Arrhenius behaviour in the function of temperature and the estimated values of activation energy for poly(ethylene oxide)-rich soft segment polyurethane ionomers are found higher. The increase in the conductivity with temperature can be interpreted as a hopping mechanism assisted by chain relaxation. AFM and SAXS investigations evidence lamellar arrangement at the sub-micron scale and the nanophase-separated morphology for these polyurethane ionomers. The tensile tests evidenced that the polyurethane with highest molecular weight exhibits the highest values of mechanical properties and ductile behaviour.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lelah MD, Cooper SL (eds) (1993) Polyurethanes in medicine. CRC, Boca Raton Lelah MD, Cooper SL (eds) (1993) Polyurethanes in medicine. CRC, Boca Raton
2.
go back to reference Plank H, Syre I, Dauner M, Egberg G (eds) (1987) Polyurethane in biomedical engineering: II. Progress in: biomedical engineering 3. Elsevier Applied Science Publishers, Amsterdam Plank H, Syre I, Dauner M, Egberg G (eds) (1987) Polyurethane in biomedical engineering: II. Progress in: biomedical engineering 3. Elsevier Applied Science Publishers, Amsterdam
3.
go back to reference Vermette P (2001) Tissue engineering intelligence unit 6. In: Vermette P, Griesser HJ, Laroche G, Guidoin R (eds) Biomedical applications of polyurethanes. Eurekah.com Landes Bioscience, Georgetown Vermette P (2001) Tissue engineering intelligence unit 6. In: Vermette P, Griesser HJ, Laroche G, Guidoin R (eds) Biomedical applications of polyurethanes. Eurekah.com Landes Bioscience, Georgetown
4.
go back to reference Macocinschi D, Filip D, Vlad S (2010) Surface and mechanical properties of some new biopolyurethane composites. Polym Compos 31:1956–1964CrossRef Macocinschi D, Filip D, Vlad S (2010) Surface and mechanical properties of some new biopolyurethane composites. Polym Compos 31:1956–1964CrossRef
5.
go back to reference Lan PN, Corneillie S, Schacht E, Davies M, Shard A (1996) Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Biomaterials 17:2273–2280CrossRef Lan PN, Corneillie S, Schacht E, Davies M, Shard A (1996) Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Biomaterials 17:2273–2280CrossRef
6.
go back to reference Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289:199–209CrossRef Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289:199–209CrossRef
7.
go back to reference Filip D, Macocinschi D, Paslaru E, Munteanu BS, Dumitriu RP, Lungu M, Vasile C (2014) Polyurethane biocompatible silver bionanocomposites for biomedical applications. J Nanopart Res 16 Article Number 2710 Filip D, Macocinschi D, Paslaru E, Munteanu BS, Dumitriu RP, Lungu M, Vasile C (2014) Polyurethane biocompatible silver bionanocomposites for biomedical applications. J Nanopart Res 16 Article Number 2710
8.
go back to reference Diamond T, Rowlands BJ (1991) Review article endotoxaemia in obstructive jaundice. HPB Surg 4:81–94CrossRef Diamond T, Rowlands BJ (1991) Review article endotoxaemia in obstructive jaundice. HPB Surg 4:81–94CrossRef
9.
go back to reference Marshall SE, Marples BA, Salt WG, Stretton RJ (1987) Aspects of the effect of bile salts on Candida albicans. Med Mycol 25:307–318CrossRef Marshall SE, Marples BA, Salt WG, Stretton RJ (1987) Aspects of the effect of bile salts on Candida albicans. Med Mycol 25:307–318CrossRef
10.
go back to reference Gautrot JE, Zhu XX (2006) Biodegradable polymers based on bile acids and potential biomedical applications. J Biomater Sci Polym Ed 17:1123–1139CrossRef Gautrot JE, Zhu XX (2006) Biodegradable polymers based on bile acids and potential biomedical applications. J Biomater Sci Polym Ed 17:1123–1139CrossRef
11.
go back to reference Gouin S, Zhu XX, Lehnert S (2000) New polyanhydrides made from a bile acid dimer and sebacic acid: synthesis, characterization, and degradation. Macromolecules 33:5379–5383CrossRef Gouin S, Zhu XX, Lehnert S (2000) New polyanhydrides made from a bile acid dimer and sebacic acid: synthesis, characterization, and degradation. Macromolecules 33:5379–5383CrossRef
12.
go back to reference Nelson AM, Long TE (2014) Synthesis, properties and applications of ion-containing polyurethane segmented copolymers. Macromol Chem Phys 215:2161–2174CrossRef Nelson AM, Long TE (2014) Synthesis, properties and applications of ion-containing polyurethane segmented copolymers. Macromol Chem Phys 215:2161–2174CrossRef
13.
go back to reference Zhu W, Wang X, Yang B, Wang L, Tang X, Yang C (2001) Synthesis and characterization of polydioxolane polyurethane ionomer. J Mater Sci 36:5137–5141CrossRef Zhu W, Wang X, Yang B, Wang L, Tang X, Yang C (2001) Synthesis and characterization of polydioxolane polyurethane ionomer. J Mater Sci 36:5137–5141CrossRef
14.
go back to reference Buruiana T, Buruiana EC (2002) Ionomeric polyurethanes of pyridinium type with side azobenzene groups. J Appl Polym Sci 86:1240–1247CrossRef Buruiana T, Buruiana EC (2002) Ionomeric polyurethanes of pyridinium type with side azobenzene groups. J Appl Polym Sci 86:1240–1247CrossRef
15.
go back to reference Filip D, Macocinschi D, Vlad S, Lisa G, Cristea M, Zaltariov MF (2016) Structure-property relationship of sodium deoxycholate based poly(ester ether)urethane ionomers for biomedical applications. J Appl Polym Sci. doi:10.1002/app.42921 Filip D, Macocinschi D, Vlad S, Lisa G, Cristea M, Zaltariov MF (2016) Structure-property relationship of sodium deoxycholate based poly(ester ether)urethane ionomers for biomedical applications. J Appl Polym Sci. doi:10.​1002/​app.​42921
16.
go back to reference Filip D, Macocinschi D, Paslaru E, Tuchilus CG, Vlad S (2016) Surface characterization and antimicrobial properties of sodium deoxycholate-based poly(ester ether)urethane ionomer biomaterials. React Funct Polym 102:70–81CrossRef Filip D, Macocinschi D, Paslaru E, Tuchilus CG, Vlad S (2016) Surface characterization and antimicrobial properties of sodium deoxycholate-based poly(ester ether)urethane ionomer biomaterials. React Funct Polym 102:70–81CrossRef
17.
go back to reference Albu RM, Avram E, Musteata VE, Ioan S (2014) Dielectric relaxation and AC conductivity of modified polysulfones with chelating groups. J Solid State Electrochem 18:785–794CrossRef Albu RM, Avram E, Musteata VE, Ioan S (2014) Dielectric relaxation and AC conductivity of modified polysulfones with chelating groups. J Solid State Electrochem 18:785–794CrossRef
18.
go back to reference Kremer F, Schonhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin Kremer F, Schonhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin
19.
go back to reference Mohsen NM, Craig RG, Filisko FE (2001) The effects of moisture on the dielectric relaxation of urethane dimethacrylate polymer and composites. J Oral Rehabil 28:376–392CrossRef Mohsen NM, Craig RG, Filisko FE (2001) The effects of moisture on the dielectric relaxation of urethane dimethacrylate polymer and composites. J Oral Rehabil 28:376–392CrossRef
20.
go back to reference Sekkar V, Bhagawan SS, Prabhakaran N, Rama Rao M, Ninan KN (2000) Polyurethanes based on hydroxyl terminated polybutadiene: modelling of network parameters and correlation with mechanical properties. Polymer 41:6773–6786CrossRef Sekkar V, Bhagawan SS, Prabhakaran N, Rama Rao M, Ninan KN (2000) Polyurethanes based on hydroxyl terminated polybutadiene: modelling of network parameters and correlation with mechanical properties. Polymer 41:6773–6786CrossRef
21.
go back to reference Okrasa L, Czech P, Boiteux G, Mechin F, Ulanski J (2008) Molecular dynamics in polyester- or polyether-urethane networks based on different diisocyanates. Polymer 49:2662–2668CrossRef Okrasa L, Czech P, Boiteux G, Mechin F, Ulanski J (2008) Molecular dynamics in polyester- or polyether-urethane networks based on different diisocyanates. Polymer 49:2662–2668CrossRef
22.
go back to reference Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) Proton conducting polymer electrolyte: II polyethylene oxide + NH4I system. J Mater Sci 27:6357–6364CrossRef Maurya KK, Srivastava N, Hashmi SA, Chandra S (1992) Proton conducting polymer electrolyte: II polyethylene oxide + NH4I system. J Mater Sci 27:6357–6364CrossRef
23.
go back to reference Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRef
24.
go back to reference Wei X, Yu X (1997) Synthesis and properties of sulfonated polyurethane ionomers with anions in the polyether soft segments. J Polym Sci, Part B: Polym Phys 35:225–232CrossRef Wei X, Yu X (1997) Synthesis and properties of sulfonated polyurethane ionomers with anions in the polyether soft segments. J Polym Sci, Part B: Polym Phys 35:225–232CrossRef
25.
go back to reference Yu TL, Lin TL, Tsai YM, Liu WJ (1999) Morphology of polyurethanes with triol monomer crosslinked on hard segments. J Polym Sci, Part B: Polym Phys 37:2673–2681CrossRef Yu TL, Lin TL, Tsai YM, Liu WJ (1999) Morphology of polyurethanes with triol monomer crosslinked on hard segments. J Polym Sci, Part B: Polym Phys 37:2673–2681CrossRef
26.
go back to reference Guinier A (1939) La diffraction des rayons X aux tres petits angles; application a l’etude de phenomenes ultramicroscopiques. Ann Phys 12:161–237 Guinier A (1939) La diffraction des rayons X aux tres petits angles; application a l’etude de phenomenes ultramicroscopiques. Ann Phys 12:161–237
27.
go back to reference Grant TD, Luft JR, Carter LG, Matsui T, Weiss TM, Martel A, Snell EH (2015) The accurate assessment of small-angle X-ray scattering data. Acta Cryst D71:45–56 Grant TD, Luft JR, Carter LG, Matsui T, Weiss TM, Martel A, Snell EH (2015) The accurate assessment of small-angle X-ray scattering data. Acta Cryst D71:45–56
28.
go back to reference Trovati G, Sanches EA, de Souza SM, dos Santos AL, Nett SC, Mascarenhas YP, Chierice GO (2014) Rigid and semi rigid polyurethane resins: a structural investigation using DMA, SAXS and Le Bail method. J Mol Struct 1075:589–593CrossRef Trovati G, Sanches EA, de Souza SM, dos Santos AL, Nett SC, Mascarenhas YP, Chierice GO (2014) Rigid and semi rigid polyurethane resins: a structural investigation using DMA, SAXS and Le Bail method. J Mol Struct 1075:589–593CrossRef
30.
go back to reference Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloidalen Systemen, Teil I. Kolloid-Z 124:83–114CrossRef Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloidalen Systemen, Teil I. Kolloid-Z 124:83–114CrossRef
Metadata
Title
Molecular dynamics, conductivity and morphology of sodium deoxycholate-based poly(ester ether)urethane ionomer biomaterials
Authors
D. Filip
M. Asandulesa
D. Macocinschi
M. Aflori
S. Vlad
Publication date
16-06-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0113-3

Other articles of this Issue 18/2016

Journal of Materials Science 18/2016 Go to the issue

Premium Partners