Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2017

01-11-2017 | Review

MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture

Authors: Yasir Javed, Kanwal Akhtar, Hafeez Anwar, Yasir Jamil

Published in: Journal of Nanoparticle Research | Issue 11/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Iron oxide nanoparticles (IONPs) extensively employed beyond regenerative medicines to imaging disciplines because of their great constituents for magneto-responsive nano-systems. The unique superparamagnetic behavior makes IONPs very suitable for hyperthermia and imaging applications. From the last decade, versatile functionalization with surface capabilities, efficient contrast properties and biocompatibilities make IONPs an essential imaging contrast agent for magnetic resonance imaging (MRI). IONPs have shown signals for both longitudinal relaxation and transverse relaxation; therefore, negative contrast as well as dual contrast can be used for imaging in MRI. In the current review, we have focused on different oxidation state of iron oxides, i.e., magnetite, maghemite and hematite for their T1 and T2 contrast enhancement properties. We have also discussed different factors (synthesis protocols, biocompatibility, toxicity, architecture, etc.) that can affect the contrast properties of the IONPs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aggarwal P, Hall JB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRef Aggarwal P, Hall JB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437CrossRef
go back to reference Albornoz C, Sileo EE et al (2004) Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol. Phys B Condens Matter 354(1):149–153CrossRef Albornoz C, Sileo EE et al (2004) Magnetic polymers of maghemite (γ-Fe2O3) and polyvinyl alcohol. Phys B Condens Matter 354(1):149–153CrossRef
go back to reference Alexiou C, Jurgons R et al (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9-10):2762–2768CrossRef Alexiou C, Jurgons R et al (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9-10):2762–2768CrossRef
go back to reference Arshad M, Siddiqui HA et al (2016) Synthesis of iron oxide magnetic nanoparticle by sol-gel method and their characterization. Professor Dr. Muhammad Tufail Convener 98:98 Arshad M, Siddiqui HA et al (2016) Synthesis of iron oxide magnetic nanoparticle by sol-gel method and their characterization. Professor Dr. Muhammad Tufail Convener 98:98
go back to reference Azhdarzadeh M, Atyabi F et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 143:224–232CrossRef Azhdarzadeh M, Atyabi F et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 143:224–232CrossRef
go back to reference Ba-Abbad MM, Takriff MS et al (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893CrossRef Ba-Abbad MM, Takriff MS et al (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893CrossRef
go back to reference Baaziz W, Pichon BP et al (2014) Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C 118(7):3795–3810CrossRef Baaziz W, Pichon BP et al (2014) Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C 118(7):3795–3810CrossRef
go back to reference Bae KH, Kim YB et al (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging. Bioconjug Chem 21(3):505–512CrossRef Bae KH, Kim YB et al (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging. Bioconjug Chem 21(3):505–512CrossRef
go back to reference Bagwe R, Kanicky J et al (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77 Bagwe R, Kanicky J et al (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77
go back to reference Basak S, Chen D-R et al (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268CrossRef Basak S, Chen D-R et al (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268CrossRef
go back to reference Bashir M, Riaz S et al (2014) Magnetic Properties of Fe 3 O 4 Stabilized Zirconia. IEEE Trans Magn 50(8):1–4CrossRef Bashir M, Riaz S et al (2014) Magnetic Properties of Fe 3 O 4 Stabilized Zirconia. IEEE Trans Magn 50(8):1–4CrossRef
go back to reference Basti H, Tahar LB et al (2010) Catechol derivatives-coated Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341(2):248–254CrossRef Basti H, Tahar LB et al (2010) Catechol derivatives-coated Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341(2):248–254CrossRef
go back to reference Beg MS, Mohapatra J et al (2017) Porous Fe 3 O 4-SiO 2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J Magn Magn Mater 428:340–347CrossRef Beg MS, Mohapatra J et al (2017) Porous Fe 3 O 4-SiO 2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. J Magn Magn Mater 428:340–347CrossRef
go back to reference Bermudez E, Mangum JB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357CrossRef Bermudez E, Mangum JB et al (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347–357CrossRef
go back to reference Bhavani P, Rajababu C et al (2016) Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH. Int J Mater Res 107(10):942–947CrossRef Bhavani P, Rajababu C et al (2016) Synthesis and characterization of iron oxide nanoparticles prepared hydrothermally at different reaction temperatures and pH. Int J Mater Res 107(10):942–947CrossRef
go back to reference Bhosale RR, Kumar A et al (2016) Propylene oxide assisted sol–gel synthesis of zinc ferrite nanoparticles for solar fuel production. Ceram Int 42(2):2431–2438CrossRef Bhosale RR, Kumar A et al (2016) Propylene oxide assisted sol–gel synthesis of zinc ferrite nanoparticles for solar fuel production. Ceram Int 42(2):2431–2438CrossRef
go back to reference Bhosale RR, Shende RV et al (2012) Sol-gel derived NiFe 2 O 4 modified with ZrO 2 for hydrogen generation from solar thermochemical water-splitting reaction. MRS Online Proceedings Library Archive:1387 Bhosale RR, Shende RV et al (2012) Sol-gel derived NiFe 2 O 4 modified with ZrO 2 for hydrogen generation from solar thermochemical water-splitting reaction. MRS Online Proceedings Library Archive:1387
go back to reference Blanco-Andujar C, Walter A et al (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11(14):1889–1910CrossRef Blanco-Andujar C, Walter A et al (2016) Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine 11(14):1889–1910CrossRef
go back to reference Bomati-Miguel O, Miguel-Sancho N et al (2014) Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. J Nanopart Res 16(3):1–13CrossRef Bomati-Miguel O, Miguel-Sancho N et al (2014) Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. J Nanopart Res 16(3):1–13CrossRef
go back to reference Bomatí-Miguel O, Morales MP et al (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26(28):5695–5703CrossRef Bomatí-Miguel O, Morales MP et al (2005) Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging. Biomaterials 26(28):5695–5703CrossRef
go back to reference Bondarenko O, Juganson K et al (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200CrossRef Bondarenko O, Juganson K et al (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200CrossRef
go back to reference Brahma P, Banerjee S et al (2002) Properties of nanocomposites of α-Fe and Fe 3 O 4. J Magn Magn Mater 246(1):162–168CrossRef Brahma P, Banerjee S et al (2002) Properties of nanocomposites of α-Fe and Fe 3 O 4. J Magn Magn Mater 246(1):162–168CrossRef
go back to reference Brooks RA, Moiny F et al (2001) On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45(6):1014–1020CrossRef Brooks RA, Moiny F et al (2001) On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45(6):1014–1020CrossRef
go back to reference Brunner TJ, Wick P et al (2006) vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381 Brunner TJ, Wick P et al (2006) vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381
go back to reference Bucci OM, Crocco L et al (2015) On the optimal measurement configuration for magnetic nanoparticles-enhanced breast cancer microwave imaging. IEEE Trans Biomed Eng 62(2):407–414CrossRef Bucci OM, Crocco L et al (2015) On the optimal measurement configuration for magnetic nanoparticles-enhanced breast cancer microwave imaging. IEEE Trans Biomed Eng 62(2):407–414CrossRef
go back to reference Budde MD, Frank JA (2009) Magnetic tagging of therapeutic cells for MRI. J Nucl Med 50(2):171–174CrossRef Budde MD, Frank JA (2009) Magnetic tagging of therapeutic cells for MRI. J Nucl Med 50(2):171–174CrossRef
go back to reference Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499CrossRef Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499CrossRef
go back to reference Cedervall T, Lynch I et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055CrossRef Cedervall T, Lynch I et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055CrossRef
go back to reference Chamundeeswari M, Sastry T et al (2013) Iron nanoparticles from animal blood for cellular imaging and targeted delivery for cancer treatment. Biochim Biophys Acta Gen Subj 1830(4):3005–3010CrossRef Chamundeeswari M, Sastry T et al (2013) Iron nanoparticles from animal blood for cellular imaging and targeted delivery for cancer treatment. Biochim Biophys Acta Gen Subj 1830(4):3005–3010CrossRef
go back to reference Chatterjee S, Sarkar K (2013) A computational and mathematical approach towards the design and synthesis of uniform Au seed decorated Fe 3 O 4 nanoparticle for potential bio-application. Procedia Technol 10:457–463CrossRef Chatterjee S, Sarkar K (2013) A computational and mathematical approach towards the design and synthesis of uniform Au seed decorated Fe 3 O 4 nanoparticle for potential bio-application. Procedia Technol 10:457–463CrossRef
go back to reference Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36(7):1369–1377CrossRef Chen D-H, He X-R (2001) Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater Res Bull 36(7):1369–1377CrossRef
go back to reference Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832CrossRef Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832CrossRef
go back to reference Chen G, Chen W et al (2009) MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30(10):1962–1970CrossRef Chen G, Chen W et al (2009) MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30(10):1962–1970CrossRef
go back to reference Chen H, Sulejmanovic D et al (2014) Iron-loaded magnetic nanocapsules for pH-triggered drug release and MRI imaging. Chem Mater 26(6):2105–2112CrossRef Chen H, Sulejmanovic D et al (2014) Iron-loaded magnetic nanocapsules for pH-triggered drug release and MRI imaging. Chem Mater 26(6):2105–2112CrossRef
go back to reference Chen R, Ling D et al (2015) Parallel comparative studies on mouse toxicity of oxide nanoparticle-and gadolinium-based T1 MRI contrast agents. ACS Nano 9(12):12425–12435 Chen R, Ling D et al (2015) Parallel comparative studies on mouse toxicity of oxide nanoparticle-and gadolinium-based T1 MRI contrast agents. ACS Nano 9(12):12425–12435
go back to reference Chen X, Gambhir SS et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841–841CrossRef Chen X, Gambhir SS et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841–841CrossRef
go back to reference Cheng C, Xu F et al (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35(5):1072–1079CrossRef Cheng C, Xu F et al (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35(5):1072–1079CrossRef
go back to reference Cheong S, Ferguson P et al (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed 50(18):4206–4209 Cheong S, Ferguson P et al (2011) Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew Chem Int Ed 50(18):4206–4209
go back to reference Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J Mater Process Technol 191(1):235–237CrossRef Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure. J Mater Process Technol 191(1):235–237CrossRef
go back to reference Clapsaddle BJ, Gash AE et al (2003) Silicon oxide in an iron (III) oxide matrix: the sol–gel synthesis and characterization of Fe–Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331(1):190–201CrossRef Clapsaddle BJ, Gash AE et al (2003) Silicon oxide in an iron (III) oxide matrix: the sol–gel synthesis and characterization of Fe–Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331(1):190–201CrossRef
go back to reference Clarkson R (2002) Blood-pool MRI contrast agents: properties and characterization. Springer, Contrast Agents I, pp 201–235 Clarkson R (2002) Blood-pool MRI contrast agents: properties and characterization. Springer, Contrast Agents I, pp 201–235
go back to reference Colvin, V. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. Find this article online. Colvin, V. (2003). The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. Find this article online.
go back to reference Couture P, Williams G et al (2017) Nanocrystalline multiferroic BiFeO 3 thin films made by room temperature sputtering and thermal annealing, and formation of an iron oxide-induced exchange bias. J Alloys Compd 695:3061–3068CrossRef Couture P, Williams G et al (2017) Nanocrystalline multiferroic BiFeO 3 thin films made by room temperature sputtering and thermal annealing, and formation of an iron oxide-induced exchange bias. J Alloys Compd 695:3061–3068CrossRef
go back to reference Cui H, Liu Y et al (2013) Structure switch between α-Fe 2 O 3, γ-Fe 2 O 3 and Fe 3 O 4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24(1):93–97CrossRef Cui H, Liu Y et al (2013) Structure switch between α-Fe 2 O 3, γ-Fe 2 O 3 and Fe 3 O 4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24(1):93–97CrossRef
go back to reference Cui X, Belo S et al (2014) Aluminium hydroxide stabilised MnFe 2 O 4 and Fe 3 O 4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 35(22):5840–5846CrossRef Cui X, Belo S et al (2014) Aluminium hydroxide stabilised MnFe 2 O 4 and Fe 3 O 4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging. Biomaterials 35(22):5840–5846CrossRef
go back to reference Dalle-Donne I, Rossi R et al (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898CrossRef Dalle-Donne I, Rossi R et al (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898CrossRef
go back to reference David B, Pizúrová N et al (2004) Preparation of iron/graphite core–shell structured nanoparticles. J Alloys Compd 378(1):112–116CrossRef David B, Pizúrová N et al (2004) Preparation of iron/graphite core–shell structured nanoparticles. J Alloys Compd 378(1):112–116CrossRef
go back to reference De Montferrand C, Hu L et al (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9(4):6150–6157CrossRef De Montferrand C, Hu L et al (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9(4):6150–6157CrossRef
go back to reference Di Carlo L, Conte DE et al (2014) Microwave-assisted fluorolytic sol–gel route to iron fluoride nanoparticles for Li-Ion batteries. Chem Commun 50(4):460–462CrossRef Di Carlo L, Conte DE et al (2014) Microwave-assisted fluorolytic sol–gel route to iron fluoride nanoparticles for Li-Ion batteries. Chem Commun 50(4):460–462CrossRef
go back to reference Díaz B, Sánchez-Espinel C et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4(11):2025–2034CrossRef Díaz B, Sánchez-Espinel C et al (2008) Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4(11):2025–2034CrossRef
go back to reference DiMarino AM, Caplan AI et al (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201CrossRef DiMarino AM, Caplan AI et al (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201CrossRef
go back to reference Ding Y, Hu Y et al (2004) Polymer–monomer pairs as a reaction system for the synthesis of magnetic Fe3O4–polymer hybrid hollow nanospheres. Angew Chem Int Ed 43(46):6369–6372CrossRef Ding Y, Hu Y et al (2004) Polymer–monomer pairs as a reaction system for the synthesis of magnetic Fe3O4–polymer hybrid hollow nanospheres. Angew Chem Int Ed 43(46):6369–6372CrossRef
go back to reference Doan BT, Seguin J et al (2012) Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging. Contrast Media Mol Imaging 7(2):153–159CrossRef Doan BT, Seguin J et al (2012) Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging. Contrast Media Mol Imaging 7(2):153–159CrossRef
go back to reference Dobrovolskaia MA, Patri AK et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed: Nanotechnol, Biol Med 5(2):106–117CrossRef Dobrovolskaia MA, Patri AK et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed: Nanotechnol, Biol Med 5(2):106–117CrossRef
go back to reference Dong Y, Wang H et al (2017) Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study. J Am Ceram Soc 100(3):876–886 Dong Y, Wang H et al (2017) Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study. J Am Ceram Soc 100(3):876–886
go back to reference Duan H, Kuang M et al (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112(22):8127–8131CrossRef Duan H, Kuang M et al (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112(22):8127–8131CrossRef
go back to reference Dürr S, Janko C et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409CrossRef Dürr S, Janko C et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409CrossRef
go back to reference Duzgunes N, Düzgüneş N (2012) Nanomedicine: Infectious Diseases. Immunotherapy, Diagnostics, Antifibrotics, Toxicology and Gene Medicine, Elsevier Duzgunes N, Düzgüneş N (2012) Nanomedicine: Infectious Diseases. Immunotherapy, Diagnostics, Antifibrotics, Toxicology and Gene Medicine, Elsevier
go back to reference Eghbali P, Fattahi H et al (2016) Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. J Iran Chem Soc 13(1):87–93 Eghbali P, Fattahi H et al (2016) Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. J Iran Chem Soc 13(1):87–93
go back to reference Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19(35):6258–6266CrossRef Fang C, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19(35):6258–6266CrossRef
go back to reference Ferguson RM, Khandhar AP et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34(5):1077–1084CrossRef Ferguson RM, Khandhar AP et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34(5):1077–1084CrossRef
go back to reference Fornara A, Johansson P et al (2008) Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 8(10):3423–3428CrossRef Fornara A, Johansson P et al (2008) Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett 8(10):3423–3428CrossRef
go back to reference Freire T, Dutra L et al (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite NANOCOMPOSITES as a modified electrode sensor. In: Carbohydrate Polymers Freire T, Dutra L et al (2016) Fast ultrasound assisted synthesis of CHITOSAN-based magnetite NANOCOMPOSITES as a modified electrode sensor. In: Carbohydrate Polymers
go back to reference Frey NA, Peng S et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542CrossRef Frey NA, Peng S et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542CrossRef
go back to reference Gautam A, van Veggel FC (2013) Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J Mater Chem B 1(39):5186–5200CrossRef Gautam A, van Veggel FC (2013) Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J Mater Chem B 1(39):5186–5200CrossRef
go back to reference Gessner A, Lieske A et al (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170CrossRef Gessner A, Lieske A et al (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170CrossRef
go back to reference Gessner A, Lieske A et al (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65(3):319–326CrossRef Gessner A, Lieske A et al (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65(3):319–326CrossRef
go back to reference Glasgow W, Fellows B et al (2016) Continuous synthesis of iron oxide (Fe 3 O 4) nanoparticles via thermal decomposition. Particuology 26:47–53CrossRef Glasgow W, Fellows B et al (2016) Continuous synthesis of iron oxide (Fe 3 O 4) nanoparticles via thermal decomposition. Particuology 26:47–53CrossRef
go back to reference Gogola D, Štrbák O et al (2013) Contrast agents based on magnetic nanoparticles and its interaction with surrounding environment during contrast imaging. MEASUREMENT:299–302 Gogola D, Štrbák O et al (2013) Contrast agents based on magnetic nanoparticles and its interaction with surrounding environment during contrast imaging. MEASUREMENT:299–302
go back to reference Grabinski CM, Salaklang J et al (2014) Multifunctionalized spions for nuclear targeting: cell uptake and gene expression. Nano 9(01):1450009CrossRef Grabinski CM, Salaklang J et al (2014) Multifunctionalized spions for nuclear targeting: cell uptake and gene expression. Nano 9(01):1450009CrossRef
go back to reference Gref R, Lück M et al (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3):301–313CrossRef Gref R, Lück M et al (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3):301–313CrossRef
go back to reference Guardia P, Batlle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759CrossRef Guardia P, Batlle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759CrossRef
go back to reference Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRef Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRef
go back to reference Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef
go back to reference Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73CrossRef Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73CrossRef
go back to reference Gutiérrez L, Costo R et al (2015) Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 44(7):2943–2952CrossRef Gutiérrez L, Costo R et al (2015) Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 44(7):2943–2952CrossRef
go back to reference Hachani R, Lowdell M et al (2016a) Correction: polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(7):4395CrossRef Hachani R, Lowdell M et al (2016a) Correction: polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(7):4395CrossRef
go back to reference Hachani R, Lowdell M et al (2016b) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(6):3278–3287CrossRef Hachani R, Lowdell M et al (2016b) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8(6):3278–3287CrossRef
go back to reference Hadjipanayis CG, Bonder MJ et al (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929CrossRef Hadjipanayis CG, Bonder MJ et al (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925–1929CrossRef
go back to reference Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361CrossRef Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361CrossRef
go back to reference Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USACrossRef Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USACrossRef
go back to reference Hao R, Xing R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742CrossRef Hao R, Xing R et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22(25):2729–2742CrossRef
go back to reference Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRef Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRef
go back to reference Haynes CL, Hurley KR et al (2016) Mesoporous silica-coated nanoparticles. US Patent 20,160 051:471 Haynes CL, Hurley KR et al (2016) Mesoporous silica-coated nanoparticles. US Patent 20,160 051:471
go back to reference Hoshino A, Fujioka K et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169CrossRef Hoshino A, Fujioka K et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169CrossRef
go back to reference Huang H, Zhang X-F et al (2013) Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture. J Appl Phys 113(8):084312CrossRef Huang H, Zhang X-F et al (2013) Manipulated electromagnetic losses by integrating chemically heterogeneous components in Fe-based core/shell architecture. J Appl Phys 113(8):084312CrossRef
go back to reference Huang J, Zhong X et al (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86CrossRef Huang J, Zhong X et al (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86CrossRef
go back to reference Hufschmid R, Arami H et al (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7(25):11142–11154CrossRef Hufschmid R, Arami H et al (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7(25):11142–11154CrossRef
go back to reference Huh Y-M, Jun Y-w et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391CrossRef Huh Y-M, Jun Y-w et al (2005) In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 127(35):12387–12391CrossRef
go back to reference Hurley KR, Ring HL et al (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. In: Molecular pharmaceutics Hurley KR, Ring HL et al (2016) Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. In: Molecular pharmaceutics
go back to reference Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801CrossRef Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801CrossRef
go back to reference Iqbal MZ, Ma X et al (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI). J Mater Chem B 3(26):5172–5181CrossRef Iqbal MZ, Ma X et al (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI). J Mater Chem B 3(26):5172–5181CrossRef
go back to reference Jae-Hyun L, Yong-Min H et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95CrossRef Jae-Hyun L, Yong-Min H et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95CrossRef
go back to reference Jagadale TC, Takale SP et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112(37):14595–14602CrossRef Jagadale TC, Takale SP et al (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112(37):14595–14602CrossRef
go back to reference Jain S, Rathi VV et al (2012) Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 7(9):1311–1337CrossRef Jain S, Rathi VV et al (2012) Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine 7(9):1311–1337CrossRef
go back to reference Jana NR, Chen Y et al (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935CrossRef Jana NR, Chen Y et al (2004) Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935CrossRef
go back to reference Jang J t, Nah H et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121(7):1260–1264CrossRef Jang J t, Nah H et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121(7):1260–1264CrossRef
go back to reference Jennings LE, Long NJ (2009) ‘Two is better than one’—probes for dual-modality molecular imaging. Chem Commun (24):3511–3524 Jennings LE, Long NJ (2009) ‘Two is better than one’—probes for dual-modality molecular imaging. Chem Commun (24):3511–3524
go back to reference Jing, X.-h., L. Yang, et al. (2008). In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75(4): 432-438. Jing, X.-h., L. Yang, et al. (2008). In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75(4): 432-438.
go back to reference Jitianu A, Raileanu M et al (2006) Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. J Sol-Gel Sci Technol 40(2-3):317–323CrossRef Jitianu A, Raileanu M et al (2006) Fe3O4–SiO2 nanocomposites obtained via alkoxide and colloidal route. J Sol-Gel Sci Technol 40(2-3):317–323CrossRef
go back to reference Joshi HM, Lin YP et al (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113(41):17761–17767CrossRef Joshi HM, Lin YP et al (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113(41):17761–17767CrossRef
go back to reference Jun Y w, Lee JH et al (2008a) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135CrossRef Jun Y w, Lee JH et al (2008a) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47(28):5122–5135CrossRef
go back to reference Jun YW, Seo JW et al (2008b) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189 Jun YW, Seo JW et al (2008b) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41(2):179–189
go back to reference Kahn E, Tessier C et al (2002) Distribution of injected MRI contrast agents in mouse livers studied by confocal and SIMS microscopy. Anal Quant Cytol Histol 24(5):295–302 Kahn E, Tessier C et al (2002) Distribution of injected MRI contrast agents in mouse livers studied by confocal and SIMS microscopy. Anal Quant Cytol Histol 24(5):295–302
go back to reference Kamaly N, Miller AD (2010) Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci 11(4):1759–1776CrossRef Kamaly N, Miller AD (2010) Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci 11(4):1759–1776CrossRef
go back to reference Kandpal ND, Sah N et al (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90 Kandpal ND, Sah N et al (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73:87–90
go back to reference Kasche V, de Boer M et al (2003) Direct observation of intraparticle equilibration and the rate-limiting step in adsorption of proteins in chromatographic adsorbents with confocal laser scanning microscopy. J Chromatogr B 790(1):115–129CrossRef Kasche V, de Boer M et al (2003) Direct observation of intraparticle equilibration and the rate-limiting step in adsorption of proteins in chromatographic adsorbents with confocal laser scanning microscopy. J Chromatogr B 790(1):115–129CrossRef
go back to reference Kato T, Yashiro T et al (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311(1):47–51CrossRef Kato T, Yashiro T et al (2003) Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311(1):47–51CrossRef
go back to reference Kim BH, Lee N et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631CrossRef Kim BH, Lee N et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133(32):12624–12631CrossRef
go back to reference Kim D, Lee N et al (2008) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131(2):454–455CrossRef Kim D, Lee N et al (2008) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131(2):454–455CrossRef
go back to reference Kim J, Kim HS et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441CrossRef Kim J, Kim HS et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441CrossRef
go back to reference Kim J, Piao Y et al (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390CrossRef Kim J, Piao Y et al (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38(2):372–390CrossRef
go back to reference Kim SJ, Lewis B et al (2016) Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging 11(1):55–64CrossRef Kim SJ, Lewis B et al (2016) Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging 11(1):55–64CrossRef
go back to reference Kim YB, Bae KH et al (2009) Positive contrast visualization for cellular magnetic resonance imaging using susceptibility-weighted echo-time encoding. Magn Reson Imaging 27(5):601–610CrossRef Kim YB, Bae KH et al (2009) Positive contrast visualization for cellular magnetic resonance imaging using susceptibility-weighted echo-time encoding. Magn Reson Imaging 27(5):601–610CrossRef
go back to reference Kircher MF, Gambhir SS et al (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688CrossRef Kircher MF, Gambhir SS et al (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8(11):677–688CrossRef
go back to reference Kirchner C, Liedl T et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338CrossRef Kirchner C, Liedl T et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338CrossRef
go back to reference Kluchova K, Zboril R et al (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30(15):2855–2863CrossRef Kluchova K, Zboril R et al (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis—their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30(15):2855–2863CrossRef
go back to reference Kolesnichenko, V., G. Goloverda, et al. (2016). Iron oxide nanoparticles with a variable size and an iron oxidation state for imaging applications. Kolesnichenko, V., G. Goloverda, et al. (2016). Iron oxide nanoparticles with a variable size and an iron oxidation state for imaging applications.
go back to reference Kucheryavy P, He J et al (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716CrossRef Kucheryavy P, He J et al (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29(2):710–716CrossRef
go back to reference Kuo Y-T, Chen C-Y et al (2016) Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR imaging of the liver in an animal model. PloS One 11(2):e0148695 Kuo Y-T, Chen C-Y et al (2016) Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR imaging of the liver in an animal model. PloS One 11(2):e0148695
go back to reference Labarre D, Vauthier C et al (2005) Interactions of blood proteins with poly (isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084CrossRef Labarre D, Vauthier C et al (2005) Interactions of blood proteins with poly (isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084CrossRef
go back to reference Lacroix L-M, Frey Huls N et al (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11(4):1641–1645CrossRef Lacroix L-M, Frey Huls N et al (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11(4):1641–1645CrossRef
go back to reference Lartigue L n, Hugounenq P et al (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949 Lartigue L n, Hugounenq P et al (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6(12):10935–10949
go back to reference Laurent S, Bridot J-L et al (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future 2(3):427–449 Laurent S, Bridot J-L et al (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future 2(3):427–449
go back to reference Laurent S, Forge D et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef Laurent S, Forge D et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef
go back to reference Lawaczeck R, Menzel M et al (2004) Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem 18(10):506–513CrossRef Lawaczeck R, Menzel M et al (2004) Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem 18(10):506–513CrossRef
go back to reference Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef
go back to reference Leao Andrade A, Domingos Fabris J et al (2015) Current status of magnetite-based Core@Shell structures for diagnosis and therapy in oncology short running title: biomedical applications of magnetite@shell structures. Curr Pharm Des 21(37):5417–5433CrossRef Leao Andrade A, Domingos Fabris J et al (2015) Current status of magnetite-based Core@Shell structures for diagnosis and therapy in oncology short running title: biomedical applications of magnetite@shell structures. Curr Pharm Des 21(37):5417–5433CrossRef
go back to reference Lee J-H, Huh Y-M et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRef Lee J-H, Huh Y-M et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRef
go back to reference Lee N, Choi Y et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12(6):3127–3131CrossRef Lee N, Choi Y et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12(6):3127–3131CrossRef
go back to reference Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589CrossRef Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41(7):2575–2589CrossRef
go back to reference Lee N, Kim H et al (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci 108(7):2662–2667CrossRef Lee N, Kim H et al (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci 108(7):2662–2667CrossRef
go back to reference Leonardi S, Mirzaei A et al (2016) A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol–gel and electrospinning techniques. Nanotechnology 27(7):075502CrossRef Leonardi S, Mirzaei A et al (2016) A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol–gel and electrospinning techniques. Nanotechnology 27(7):075502CrossRef
go back to reference Li L, Jiang W et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8):595–615CrossRef Li L, Jiang W et al (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8):595–615CrossRef
go back to reference Li N, Xia T et al (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699CrossRef Li N, Xia T et al (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699CrossRef
go back to reference Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7(21):2965–2980CrossRef Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7(21):2965–2980CrossRef
go back to reference Li Z, Tan B et al (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4(2):231–239CrossRef Li Z, Tan B et al (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4(2):231–239CrossRef
go back to reference Lindman S, Lynch I et al (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920CrossRef Lindman S, Lynch I et al (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7(4):914–920CrossRef
go back to reference Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9-10):1450–1466CrossRef Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9-10):1450–1466CrossRef
go back to reference Ling D, Lee N et al (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285CrossRef Ling D, Lee N et al (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285CrossRef
go back to reference Liu G, Gao J et al (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9-10):1533–1545CrossRef Liu G, Gao J et al (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9-10):1533–1545CrossRef
go back to reference Liu G, Xie J et al (2011) N-alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 7(19):2742–2749CrossRef Liu G, Xie J et al (2011) N-alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small 7(19):2742–2749CrossRef
go back to reference Liu H, Chi D (2016) Synthesis of iron sulfide and iron oxide nanocrystal thin films for green energy applications. Procedia Eng 141:32–37 Liu H, Chi D (2016) Synthesis of iron sulfide and iron oxide nanocrystal thin films for green energy applications. Procedia Eng 141:32–37
go back to reference Liu W, Ma J et al (2016) Micron-size superparamagnetic iron-oxides watercress with unique MRI properties. Mater Chem Phys 170:123–128 Liu W, Ma J et al (2016) Micron-size superparamagnetic iron-oxides watercress with unique MRI properties. Mater Chem Phys 170:123–128
go back to reference Long GJ, Grandjean F (2013) Mössbauer spectroscopy applied to inorganic chemistry. Media, Springer Science & Business Long GJ, Grandjean F (2013) Mössbauer spectroscopy applied to inorganic chemistry. Media, Springer Science & Business
go back to reference Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein–material interface. Physica A: Statistical Mechanics and its Applications 373:511–520CrossRef Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein–material interface. Physica A: Statistical Mechanics and its Applications 373:511–520CrossRef
go back to reference Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1):40–47 Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3(1):40–47
go back to reference Magnitsky S, Zhang J et al (2017) Positive contrast from cells labeled with iron oxide nanoparticles: quantitation of imaging data. Magn Reson Med 78(5):1900–1910 Magnitsky S, Zhang J et al (2017) Positive contrast from cells labeled with iron oxide nanoparticles: quantitation of imaging data. Magn Reson Med 78(5):1900–1910
go back to reference Mailänder V, Lorenz MR et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10(3):138–146CrossRef Mailänder V, Lorenz MR et al (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10(3):138–146CrossRef
go back to reference Mao B, Kang Z et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231CrossRef Mao B, Kang Z et al (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231CrossRef
go back to reference Markides H, Rotherham M et al (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13CrossRef Markides H, Rotherham M et al (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13CrossRef
go back to reference Masthoff I-C, Kraken M et al (2016) Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J Sol-Gel Sci Technol 77(3):553–564CrossRef Masthoff I-C, Kraken M et al (2016) Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J Sol-Gel Sci Technol 77(3):553–564CrossRef
go back to reference Matijevic E, Borkovec M (2012) Surface and colloid science. Springer US. Matijevic E, Borkovec M (2012) Surface and colloid science. Springer US.
go back to reference Mazuel F, Espinosa A et al (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano 10(8):7627–7638 Mazuel F, Espinosa A et al (2016) Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano 10(8):7627–7638
go back to reference McDonagh BH, Singh G et al (2016) L-dopa-coated manganese oxide nanoparticles as dual MRI contrast agents and drug-delivery vehicles. Small 12(3):301–306CrossRef McDonagh BH, Singh G et al (2016) L-dopa-coated manganese oxide nanoparticles as dual MRI contrast agents and drug-delivery vehicles. Small 12(3):301–306CrossRef
go back to reference Møller P, Jacobsen NR et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44(1):1–46 Møller P, Jacobsen NR et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44(1):1–46
go back to reference Monopoli MP, Walczyk D et al (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRef Monopoli MP, Walczyk D et al (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRef
go back to reference Monteiro-Riviere N, Inman A et al (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235CrossRef Monteiro-Riviere N, Inman A et al (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235CrossRef
go back to reference Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3):205–213 Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3):205–213
go back to reference Morris MC, Gros E et al (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35(7):e49CrossRef Morris MC, Gros E et al (2007) A non-covalent peptide-based carrier for in vivo delivery of DNA mimics. Nucleic Acids Res 35(7):e49CrossRef
go back to reference Mou X, Ali Z et al (2015) Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 15(1):54–62CrossRef Mou X, Ali Z et al (2015) Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 15(1):54–62CrossRef
go back to reference Mulder WJ, Griffioen AW et al (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2(3):307–324CrossRef Mulder WJ, Griffioen AW et al (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2(3):307–324CrossRef
go back to reference Mulens, V., M. d. P. Morales, et al. (2013). Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. ISRN Nanomaterials 2013. Mulens, V., M. d. P. Morales, et al. (2013). Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review. ISRN Nanomaterials 2013.
go back to reference Na HB, Song IC et al (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRef Na HB, Song IC et al (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148CrossRef
go back to reference Nachimuthu RK, Jeffery RD et al (2014) Investigation of cerium-substituted europium iron garnets deposited by biased target ion beam deposition. IEEE Trans Magn 50(12):1–7CrossRef Nachimuthu RK, Jeffery RD et al (2014) Investigation of cerium-substituted europium iron garnets deposited by biased target ion beam deposition. IEEE Trans Magn 50(12):1–7CrossRef
go back to reference Nagineni VS, Zhao S et al (2005) Microreactors for syngas conversion to higher alkanes: characterization of sol–gel-encapsulated nanoscale Fe–Co catalysts in the microchannels. Ind Eng Chem Res 44(15):5602–5607CrossRef Nagineni VS, Zhao S et al (2005) Microreactors for syngas conversion to higher alkanes: characterization of sol–gel-encapsulated nanoscale Fe–Co catalysts in the microchannels. Ind Eng Chem Res 44(15):5602–5607CrossRef
go back to reference Neamnark A, Suwantong O et al (2009) Aliphatic lipid substitution on 2 kDa polyethylenimine improves plasmid delivery and transgene expression. Mol Pharm 6(6):1798–1815CrossRef Neamnark A, Suwantong O et al (2009) Aliphatic lipid substitution on 2 kDa polyethylenimine improves plasmid delivery and transgene expression. Mol Pharm 6(6):1798–1815CrossRef
go back to reference Nel A, Xia T et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef Nel A, Xia T et al (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRef
go back to reference Nie Z, Petukhova A et al (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25CrossRef Nie Z, Petukhova A et al (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25CrossRef
go back to reference Nitin N, LaConte L et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. JBIC. J Biol Inorg Chem 9(6):706–712CrossRef Nitin N, LaConte L et al (2004) Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. JBIC. J Biol Inorg Chem 9(6):706–712CrossRef
go back to reference Nizameev, I., A. Mustafina, et al. (2017). High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1, 3-diketones. Nizameev, I., A. Mustafina, et al. (2017). High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1, 3-diketones.
go back to reference Nyström AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161(2):403–408CrossRef Nyström AM, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161(2):403–408CrossRef
go back to reference Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058CrossRef Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058CrossRef
go back to reference Oberdörster G, Oberdörster E et al (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823CrossRef Oberdörster G, Oberdörster E et al (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823CrossRef
go back to reference Otsuka H, Nagasaki Y et al (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419CrossRef Otsuka H, Nagasaki Y et al (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419CrossRef
go back to reference Padmanabhan P, Kumar A et al (2016) Nanoparticles in practice for molecular-imaging applications: an overview. In: Acta biomaterialia Padmanabhan P, Kumar A et al (2016) Nanoparticles in practice for molecular-imaging applications: an overview. In: Acta biomaterialia
go back to reference Palekar RU, Jallouk AP et al (2015) Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine 10(11):1817–1832CrossRef Palekar RU, Jallouk AP et al (2015) Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine 10(11):1817–1832CrossRef
go back to reference Park J, Lee E et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem 117(19):2932–2937CrossRef Park J, Lee E et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem 117(19):2932–2937CrossRef
go back to reference Patel S, Hota G (2016) Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv 6(19):15402–15414CrossRef Patel S, Hota G (2016) Iron oxide nanoparticle-immobilized PAN nanofibers: synthesis and adsorption studies. RSC Adv 6(19):15402–15414CrossRef
go back to reference Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504CrossRef Pereira C, Pereira AM et al (2012) Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24(8):1496–1504CrossRef
go back to reference Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398(2):613–650CrossRef Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398(2):613–650CrossRef
go back to reference Piao Y, Burns A et al (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18(23):3745–3758CrossRef Piao Y, Burns A et al (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18(23):3745–3758CrossRef
go back to reference Pisanic TR, Blackwell JD et al (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581CrossRef Pisanic TR, Blackwell JD et al (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581CrossRef
go back to reference Poller WC, Ramberger E et al (2016) Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells. Nano Res 9(11):3437–3452CrossRef Poller WC, Ramberger E et al (2016) Uptake of citrate-coated iron oxide nanoparticles into atherosclerotic lesions in mice occurs via accelerated transcytosis through plaque endothelial cells. Nano Res 9(11):3437–3452CrossRef
go back to reference Primc D, Belec B et al (2016) Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles. J Nanopart Res 18(3):1–13CrossRef Primc D, Belec B et al (2016) Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles. J Nanopart Res 18(3):1–13CrossRef
go back to reference Rabias I, Fardis M et al (2008) No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles. ACS Nano 2(5):977–983 Rabias I, Fardis M et al (2008) No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles. ACS Nano 2(5):977–983
go back to reference Rabias I, Fardis M et al (2015) Novel synthesis of ultra-small dextran coated maghemite nanoparticles for MRI and CT contrast agents via a low temperature co-precipitation reaction. J Nanosci Nanotechnol 15(1):205–210CrossRef Rabias I, Fardis M et al (2015) Novel synthesis of ultra-small dextran coated maghemite nanoparticles for MRI and CT contrast agents via a low temperature co-precipitation reaction. J Nanosci Nanotechnol 15(1):205–210CrossRef
go back to reference Ramniceanu G, Doan B-T et al (2016) Delayed hepatic uptake of multi-phosphonic acid poly (ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Adv 6(68):63788–63800CrossRef Ramniceanu G, Doan B-T et al (2016) Delayed hepatic uptake of multi-phosphonic acid poly (ethylene glycol) coated iron oxide measured by real-time magnetic resonance imaging. RSC Adv 6(68):63788–63800CrossRef
go back to reference Reddy LH, Arias JL et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef Reddy LH, Arias JL et al (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878CrossRef
go back to reference Remya N, Syama S et al (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511(1):586–598CrossRef Remya N, Syama S et al (2016) Toxicity, toxicokinetics and biodistribution of dextran stabilized iron oxide nanoparticles for biomedical applications. Int J Pharm 511(1):586–598CrossRef
go back to reference Riaz S, Ashraf R et al (2014) Microwave assisted iron oxide nanoparticles—structural and magnetic properties. IEEE Trans Magn 50(8):1–4 Riaz S, Ashraf R et al (2014) Microwave assisted iron oxide nanoparticles—structural and magnetic properties. IEEE Trans Magn 50(8):1–4
go back to reference Richard S, Eder V et al (2016) USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11(21):2769–2779 Richard S, Eder V et al (2016) USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11(21):2769–2779
go back to reference Rivera Gil P, Oberdörster G n et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. Acs Nano 4(10):5527–5531CrossRef Rivera Gil P, Oberdörster G n et al (2010) Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. Acs Nano 4(10):5527–5531CrossRef
go back to reference Roca A, Morales M et al (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783CrossRef Roca A, Morales M et al (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783CrossRef
go back to reference Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584CrossRef Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J Phys Chem C 111(50):18577–18584CrossRef
go back to reference Rozanova N, Zhang JZ (2013) Metal and magnetic nanostructures for cancer diagnosis and therapy. Reviews in. Nanosci Nanotechnol 2(1):29–41CrossRef Rozanova N, Zhang JZ (2013) Metal and magnetic nanostructures for cancer diagnosis and therapy. Reviews in. Nanosci Nanotechnol 2(1):29–41CrossRef
go back to reference Rubio-Navarro A, Carril M et al (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6(6):896CrossRef Rubio-Navarro A, Carril M et al (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6(6):896CrossRef
go back to reference Saeidian H, Moghaddam FM et al (2009) Superabsorbent polymer as nanoreactors for preparation of hematite nanoparticles and application of the prepared nanocatalyst for the Friedel-Crafts acylation. J Braz Chem Soc 20(3):466–471CrossRef Saeidian H, Moghaddam FM et al (2009) Superabsorbent polymer as nanoreactors for preparation of hematite nanoparticles and application of the prepared nanocatalyst for the Friedel-Crafts acylation. J Braz Chem Soc 20(3):466–471CrossRef
go back to reference Safontseva NY, Nikiforov IY (2001) On the shape of iron K absorption edges for monoferrites with a Me (Mg, Mn, Ni, Zn) Fe 2 O 4 spinel structure. Phys Solid State 43(1):61–64CrossRef Safontseva NY, Nikiforov IY (2001) On the shape of iron K absorption edges for monoferrites with a Me (Mg, Mn, Ni, Zn) Fe 2 O 4 spinel structure. Phys Solid State 43(1):61–64CrossRef
go back to reference Salvador-Morales C, Flahaut E et al (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43(3):193–201CrossRef Salvador-Morales C, Flahaut E et al (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43(3):193–201CrossRef
go back to reference Santra S, Tapec R et al (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906CrossRef Santra S, Tapec R et al (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906CrossRef
go back to reference Sathya A, Guardia P et al (2016) Co x Fe3–x O4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780CrossRef Sathya A, Guardia P et al (2016) Co x Fe3–x O4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28(6):1769–1780CrossRef
go back to reference Sayes CM, Gobin AM et al (2005) Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595CrossRef Sayes CM, Gobin AM et al (2005) Nano-C 60 cytotoxicity is due to lipid peroxidation. Biomaterials 26(36):7587–7595CrossRef
go back to reference Schäfer R, Kehlbach R et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244(2):514–523CrossRef Schäfer R, Kehlbach R et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Radiology 244(2):514–523CrossRef
go back to reference Shabestari Khiabani S, Farshbaf M et al (2016) Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol 45(1):6–17 Shabestari Khiabani S, Farshbaf M et al (2016) Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol 45(1):6–17
go back to reference Sharifi S, Behzadi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343CrossRef Sharifi S, Behzadi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343CrossRef
go back to reference Sheng-Nan S, Chao W et al (2014) Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B 23(3):037503CrossRef Sheng-Nan S, Chao W et al (2014) Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B 23(3):037503CrossRef
go back to reference Shin J, Anisur RM et al (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324CrossRef Shin J, Anisur RM et al (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48(2):321–324CrossRef
go back to reference Shin T-H, Choi Y et al (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516CrossRef Shin T-H, Choi Y et al (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516CrossRef
go back to reference Simberg D, Park J-H et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23):3926–3933CrossRef Simberg D, Park J-H et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30(23):3926–3933CrossRef
go back to reference Simeonidis K, Mourdikoudis S et al (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316(2):e1–e4CrossRef Simeonidis K, Mourdikoudis S et al (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316(2):e1–e4CrossRef
go back to reference Smolensky ED, Park H-YE et al (2013) Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B 1(22):2818–2828CrossRef Smolensky ED, Park H-YE et al (2013) Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J Mater Chem B 1(22):2818–2828CrossRef
go back to reference Soenen SJ, Brisson AR et al (2009) Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 30(22):3691–3701CrossRef Soenen SJ, Brisson AR et al (2009) Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. Biomaterials 30(22):3691–3701CrossRef
go back to reference Soenen SJ, De Cuyper M (2009) Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 4(5):207–219CrossRef Soenen SJ, De Cuyper M (2009) Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 4(5):207–219CrossRef
go back to reference Soenen SJ, Himmelreich U et al (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205CrossRef Soenen SJ, Himmelreich U et al (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205CrossRef
go back to reference Soenen SJ, Illyes E et al (2009) The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 30(36):6803–6813CrossRef Soenen SJ, Illyes E et al (2009) The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 30(36):6803–6813CrossRef
go back to reference Sohn O-J, Kim C-K et al (2008) Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol Bioprocess Eng 13(6):716–723CrossRef Sohn O-J, Kim C-K et al (2008) Immobilization of glucose oxidase and lactate dehydrogenase onto magnetic nanoparticles for bioprocess monitoring system. Biotechnol Bioprocess Eng 13(6):716–723CrossRef
go back to reference Sood A, Arora V et al (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382CrossRef Sood A, Arora V et al (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382CrossRef
go back to reference Sood A, Arora V et al (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C 80:274–281CrossRef Sood A, Arora V et al (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C 80:274–281CrossRef
go back to reference Souto EB, Müller RH (2010) Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Springer, Drug delivery, pp 115–141 Souto EB, Müller RH (2010) Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Springer, Drug delivery, pp 115–141
go back to reference Stephen ZR, Kievit FM et al (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14(7):330–338CrossRef Stephen ZR, Kievit FM et al (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14(7):330–338CrossRef
go back to reference Sun DH, Trindade MC et al (2003) Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage activation in vitro. J Biomed Mater Res A 65(2):290–298CrossRef Sun DH, Trindade MC et al (2003) Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage activation in vitro. J Biomed Mater Res A 65(2):290–298CrossRef
go back to reference Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef
go back to reference Sun S, Zeng H et al (2004) Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc 126(1):273–279CrossRef Sun S, Zeng H et al (2004) Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc 126(1):273–279CrossRef
go back to reference Szpak A, Fiejdasz S et al (2014) T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res 16(11):1–11CrossRef Szpak A, Fiejdasz S et al (2014) T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res 16(11):1–11CrossRef
go back to reference Takami S, Sato T et al (2007) Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater Lett 61(26):4769–4772CrossRef Takami S, Sato T et al (2007) Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater Lett 61(26):4769–4772CrossRef
go back to reference Tang Y, Chen Q (2007) A simple and practical method for the preparation of magnetite nanowires. Chem Lett 36(7):840–841CrossRef Tang Y, Chen Q (2007) A simple and practical method for the preparation of magnetite nanowires. Chem Lett 36(7):840–841CrossRef
go back to reference Tarin C, Carril M et al (2015) Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Scientific reports 5 Tarin C, Carril M et al (2015) Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Scientific reports 5
go back to reference Tartaj P, González-Carreño T et al (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16(6):529–533CrossRef Tartaj P, González-Carreño T et al (2004) From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals. Adv Mater 16(6):529–533CrossRef
go back to reference Tartaj P, Serna CJ (2002) Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chem Mater 14(10):4396–4402CrossRef Tartaj P, Serna CJ (2002) Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chem Mater 14(10):4396–4402CrossRef
go back to reference Tassa C, Shaw SY et al (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852CrossRef Tassa C, Shaw SY et al (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44(10):842–852CrossRef
go back to reference Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170CrossRef Tavakoli A, Sohrabi M et al (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61(3):151–170CrossRef
go back to reference Tenzer S, Docter D et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781CrossRef Tenzer S, Docter D et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781CrossRef
go back to reference Thomas R, Park I-K et al (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14(8):15910–15930CrossRef Thomas R, Park I-K et al (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14(8):15910–15930CrossRef
go back to reference Thorek DL, Chen AK et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38CrossRef Thorek DL, Chen AK et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38CrossRef
go back to reference Thu MS, Bryant LH et al (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18(3):463–467CrossRef Thu MS, Bryant LH et al (2012) Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nat Med 18(3):463–467CrossRef
go back to reference Tombácz E, Turcu R et al (2015) Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 468(3):442–453CrossRef Tombácz E, Turcu R et al (2015) Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems. Biochem Biophys Res Commun 468(3):442–453CrossRef
go back to reference Tong S, Hou S et al (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613CrossRef Tong S, Hou S et al (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10(11):4607–4613CrossRef
go back to reference Trewyn BG, Slowing II et al (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853CrossRef Trewyn BG, Slowing II et al (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40(9):846–853CrossRef
go back to reference Tromsdorf UI, Bruns OT et al (2009) A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440CrossRef Tromsdorf UI, Bruns OT et al (2009) A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9(12):4434–4440CrossRef
go back to reference Umair M, Javed I et al (2016) Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci 19(2):161–180CrossRef Umair M, Javed I et al (2016) Nanotoxicity of inert materials: the case of gold, silver and iron. J Pharm Pharm Sci 19(2):161–180CrossRef
go back to reference Unfried K, Albrecht C et al (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71CrossRef Unfried K, Albrecht C et al (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71CrossRef
go back to reference van Schooneveld MM, Vucic E et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8(8):2517–2525CrossRef van Schooneveld MM, Vucic E et al (2008) Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett 8(8):2517–2525CrossRef
go back to reference Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799CrossRef Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799CrossRef
go back to reference Wang W, Pacheco V et al (2012a) Size and compositional effects on contrast efficiency of functionalized superparamagnetic nanoparticles at ultralow and ultrahigh magnetic fields. J Phys Chem C 116(33):17880–17884CrossRef Wang W, Pacheco V et al (2012a) Size and compositional effects on contrast efficiency of functionalized superparamagnetic nanoparticles at ultralow and ultrahigh magnetic fields. J Phys Chem C 116(33):17880–17884CrossRef
go back to reference Wang H, Shrestha TB et al (2012b) Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J Nanotechnol 3:444CrossRef Wang H, Shrestha TB et al (2012b) Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J Nanotechnol 3:444CrossRef
go back to reference Wang L, Tang W et al (2014) Improving detection specificity of iron oxide nanoparticles (IONPs) using the SWIFT sequence with long T 2 suppression. Magn Reson Imaging 32(6):671–678CrossRef Wang L, Tang W et al (2014) Improving detection specificity of iron oxide nanoparticles (IONPs) using the SWIFT sequence with long T 2 suppression. Magn Reson Imaging 32(6):671–678CrossRef
go back to reference Wang Q, Shen M et al (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774 Wang Q, Shen M et al (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774
go back to reference Wang Y-XJ, Hussain SM et al (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331CrossRef Wang Y-XJ, Hussain SM et al (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331CrossRef
go back to reference Wang, Y., C. Xu, et al. (2013). Commercial nanoparticles for stem cell labeling and. Wang, Y., C. Xu, et al. (2013). Commercial nanoparticles for stem cell labeling and.
go back to reference Warheit DB, Laurence BR et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125CrossRef Warheit DB, Laurence BR et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125CrossRef
go back to reference Wei W, Quanguo H et al (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mater Eng 36:238–243 Wei W, Quanguo H et al (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mater Eng 36:238–243
go back to reference Weissleder R, Lee H (2017) et al. Magnetic nanoparticles, Google Patents Weissleder R, Lee H (2017) et al. Magnetic nanoparticles, Google Patents
go back to reference Wetterskog E, Agthe M et al (2016) Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. In: Science and Technology of Advanced Materials Wetterskog E, Agthe M et al (2016) Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. In: Science and Technology of Advanced Materials
go back to reference William WY, Chang E et al (2006) Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17(17):4483CrossRef William WY, Chang E et al (2006) Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17(17):4483CrossRef
go back to reference Woo K, Hong J et al (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818CrossRef Woo K, Hong J et al (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818CrossRef
go back to reference Wu J, Ding T et al (2013) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253CrossRef Wu J, Ding T et al (2013) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253CrossRef
go back to reference Wu S, Sun A et al (2011) Fe 3 O 4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884CrossRef Wu S, Sun A et al (2011) Fe 3 O 4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884CrossRef
go back to reference Wu W, Wu Z et al (2015a) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501CrossRef Wu W, Wu Z et al (2015a) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501CrossRef
go back to reference Wu M, Zhang D et al (2015b) Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 26(11):115102CrossRef Wu M, Zhang D et al (2015b) Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 26(11):115102CrossRef
go back to reference Xia T, Kovochich M et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRef Xia T, Kovochich M et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRef
go back to reference Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743CrossRef Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743CrossRef
go back to reference Xu C, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44(1):85–91CrossRef Xu C, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44(1):85–91CrossRef
go back to reference Xu J, Yang H et al (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309(2):307–311CrossRef Xu J, Yang H et al (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309(2):307–311CrossRef
go back to reference Yalcin S, Khodadust R et al (2015) Synthesis and characterization of polyhydroxybutyrate coated magnetic nanoparticles: toxicity analyses on different cell lines. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal. Chemistry 45(5):700–708 Yalcin S, Khodadust R et al (2015) Synthesis and characterization of polyhydroxybutyrate coated magnetic nanoparticles: toxicity analyses on different cell lines. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal. Chemistry 45(5):700–708
go back to reference Yang H, Zhuang Y et al (2011) Targeted dual-contrast T1- and T 2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32(20):4584–4593CrossRef Yang H, Zhuang Y et al (2011) Targeted dual-contrast T1- and T 2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32(20):4584–4593CrossRef
go back to reference Yang M, Gao L et al (2015a) Characterization of Fe 3 O 4/SiO 2/Gd 2 O (CO 3) 2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131:661–665CrossRef Yang M, Gao L et al (2015a) Characterization of Fe 3 O 4/SiO 2/Gd 2 O (CO 3) 2 core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agent. Talanta 131:661–665CrossRef
go back to reference Yang L, Zhou Z et al (2015b) Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 7(15):6843–6850CrossRef Yang L, Zhou Z et al (2015b) Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 7(15):6843–6850CrossRef
go back to reference Yang X, Gondikas AP et al (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127CrossRef Yang X, Gondikas AP et al (2011) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46(2):1119–1127CrossRef
go back to reference Yazdani F, Fattahi B et al (2016) Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent. J Magn Magn Mater 406:207–211CrossRef Yazdani F, Fattahi B et al (2016) Synthesis of functionalized magnetite nanoparticles to use as liver targeting MRI contrast agent. J Magn Magn Mater 406:207–211CrossRef
go back to reference Yen SK, Padmanabhan P et al (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3(12):986CrossRef Yen SK, Padmanabhan P et al (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3(12):986CrossRef
go back to reference Yoon TJ, Lee H et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666CrossRef Yoon TJ, Lee H et al (2011) Highly magnetic core–shell nanoparticles with a unique magnetization mechanism. Angew Chem Int Ed 50(20):4663–4666CrossRef
go back to reference Yu L, Yang X et al (2011) Preparation and magnetic properties of doped Ni-Fe/Fe3O4 nanocomposite. Mater Manuf Process 26(11):1383–1387CrossRef Yu L, Yang X et al (2011) Preparation and magnetic properties of doped Ni-Fe/Fe3O4 nanocomposite. Mater Manuf Process 26(11):1383–1387CrossRef
go back to reference Zelina P, Jašek O et al (2012) Versatile low-pressure plasma-enhanced process for synthesis of iron and iron-based magnetic nanopowders. World Journal of. Engineering 9(2):161–166 Zelina P, Jašek O et al (2012) Versatile low-pressure plasma-enhanced process for synthesis of iron and iron-based magnetic nanopowders. World Journal of. Engineering 9(2):161–166
go back to reference Zeng D-W, Xiao R et al (2016) Liquid foam assisted sol–gel synthesis of iron oxides for hydrogen storage via chemical looping. Int J Hydrog Energy 41(32):13923–13933CrossRef Zeng D-W, Xiao R et al (2016) Liquid foam assisted sol–gel synthesis of iron oxides for hydrogen storage via chemical looping. Int J Hydrog Energy 41(32):13923–13933CrossRef
go back to reference Zeng L, Ren W et al (2012) Ultrasmall water-soluble metal-iron oxide nanoparticles as T 1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys 14(8):2631–2636CrossRef Zeng L, Ren W et al (2012) Ultrasmall water-soluble metal-iron oxide nanoparticles as T 1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys 14(8):2631–2636CrossRef
go back to reference Zhang H, Malik V et al (2017) Synthesis and characterization of Gd-doped magnetite nanoparticles. J Magn Magn Mater 423:386–394CrossRef Zhang H, Malik V et al (2017) Synthesis and characterization of Gd-doped magnetite nanoparticles. J Magn Magn Mater 423:386–394CrossRef
go back to reference Zhang J, Ring HL et al (2016) Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med 78(2):702–712 Zhang J, Ring HL et al (2016) Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med 78(2):702–712
go back to reference Zhao X, Wang J et al (2010a) Removal of fluoride from aqueous media by Fe 3 O 4@ Al (OH) 3 magnetic nanoparticles. J Hazard Mater 173(1):102–109CrossRef Zhao X, Wang J et al (2010a) Removal of fluoride from aqueous media by Fe 3 O 4@ Al (OH) 3 magnetic nanoparticles. J Hazard Mater 173(1):102–109CrossRef
go back to reference Zhao M-X, Xia Q et al (2010b) Synthesis, biocompatibility and cell labeling of L-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31(15):4401–4408CrossRef Zhao M-X, Xia Q et al (2010b) Synthesis, biocompatibility and cell labeling of L-arginine-functional β-cyclodextrin-modified quantum dot probes. Biomaterials 31(15):4401–4408CrossRef
go back to reference Zhao Z, Zhou Z et al (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266 Zhao Z, Zhou Z et al (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266
go back to reference Zhou Z, Wang L et al (2013) Engineered iron-oxide-based nanoparticles as enhanced T 1 contrast agents for efficient tumor imaging. ACS nano 7(4):3287–3296CrossRef Zhou Z, Wang L et al (2013) Engineered iron-oxide-based nanoparticles as enhanced T 1 contrast agents for efficient tumor imaging. ACS nano 7(4):3287–3296CrossRef
go back to reference Zou J, Ostrovsky S et al (2016) Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. In: Journal of Biomedical Materials Research Part B: Applied Biomaterials Zou J, Ostrovsky S et al (2016) Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. In: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Metadata
Title
MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
Authors
Yasir Javed
Kanwal Akhtar
Hafeez Anwar
Yasir Jamil
Publication date
01-11-2017
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2017
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-4045-x

Other articles of this Issue 11/2017

Journal of Nanoparticle Research 11/2017 Go to the issue

Premium Partners