Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2013

01-10-2013

Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

Authors: M. Grujicic, S. Ramaswami, J. S. Snipes, C.-F. Yen, B. A. Cheeseman, J. S. Montgomery

Published in: Journal of Materials Engineering and Performance | Issue 10/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, LAV Armor Plate Study, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992 M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, LAV Armor Plate Study, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992
2.
go back to reference J.G. Holmes and B.J. Resnick, Flexible Robot Arc Welding System, Soc. Manuf. Eng., 1979, MS (79) J.G. Holmes and B.J. Resnick, Flexible Robot Arc Welding System, Soc. Manuf. Eng., 1979, MS (79)
3.
go back to reference U.S. Environmental Protection Agency, AP 42, Fifth Edition: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Washington, 1995, p 12.19-1–12.19-3 U.S. Environmental Protection Agency, AP 42, Fifth Edition: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Washington, 1995, p 12.19-1–12.19-3
4.
go back to reference A.D. Althouse, C.H. Turnquist, W.A. Bowditch, K.E. Bowditch, and M.A. Bowditch, Modern Welding, 10th ed., Goodheart-Willcox Publisher, Tinley Park, IL, 2004, p 233–265 A.D. Althouse, C.H. Turnquist, W.A. Bowditch, K.E. Bowditch, and M.A. Bowditch, Modern Welding, 10th ed., Goodheart-Willcox Publisher, Tinley Park, IL, 2004, p 233–265
5.
go back to reference M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012. doi:10.1007/s11665-012-0402-1 M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012. doi:10.​1007/​s11665-012-0402-1
6.
go back to reference M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C-F. Yen, B.A. Cheeseman and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557. doi:10.1007/s11665-012-0445-3 M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C-F. Yen, B.A. Cheeseman and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557. doi:10.​1007/​s11665-012-0445-3
7.
go back to reference W. Zhang, J.W. Elmer, and T. DebRoy, Modeling and Real Time Mapping of Phases During GTA Welding of 1005 Steel, Mater. Sci. Eng. A, 2002, 333, p 320–335CrossRef W. Zhang, J.W. Elmer, and T. DebRoy, Modeling and Real Time Mapping of Phases During GTA Welding of 1005 Steel, Mater. Sci. Eng. A, 2002, 333, p 320–335CrossRef
8.
go back to reference Ø. Grong, Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997 Ø. Grong, Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997
9.
go back to reference K. Easterling, Introduction to the Physical Metallurgy of Welding, 2nd ed., Butterworth Heinemann, Boston, 1992 K. Easterling, Introduction to the Physical Metallurgy of Welding, 2nd ed., Butterworth Heinemann, Boston, 1992
10.
go back to reference L.-E. Svensson, Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, 1994 L.-E. Svensson, Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, 1994
11.
go back to reference R. Mancini and C. Budde, Reaustenitisation in Fe-C Steels Revisited, Acta Mater., 1999, 47, p 2907–2911CrossRef R. Mancini and C. Budde, Reaustenitisation in Fe-C Steels Revisited, Acta Mater., 1999, 47, p 2907–2911CrossRef
12.
go back to reference R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root, Determination of Reaustenitisation Kinetics in a Fe-0.4C Steel Using Dilatometry and Neutron Diffraction, Mater. Sci. Eng. A, 1998, 256, p 152–165CrossRef R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root, Determination of Reaustenitisation Kinetics in a Fe-0.4C Steel Using Dilatometry and Neutron Diffraction, Mater. Sci. Eng. A, 1998, 256, p 152–165CrossRef
13.
go back to reference J.H. Valentich, Tube Type Dilatometers: Applications from Cryogenic to Elevated Temperatures, Instrument Society of America, Research Triangle Park, NC, 1981 J.H. Valentich, Tube Type Dilatometers: Applications from Cryogenic to Elevated Temperatures, Instrument Society of America, Research Triangle Park, NC, 1981
14.
go back to reference K.L. Moore, D.S. Naidu, R. Yender, and J. Tyler, Gas Metal Arc Welding Control: Part I—Modeling and Analysis, Nonlinear Anal. Theory, Methods Appl., 1997, 30, p 3101–3111CrossRef K.L. Moore, D.S. Naidu, R. Yender, and J. Tyler, Gas Metal Arc Welding Control: Part I—Modeling and Analysis, Nonlinear Anal. Theory, Methods Appl., 1997, 30, p 3101–3111CrossRef
15.
go back to reference J. Haidar, A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding. I, J. Appl. Phys., 1998, 84, p 3518–3529CrossRef J. Haidar, A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding. I, J. Appl. Phys., 1998, 84, p 3518–3529CrossRef
16.
go back to reference J. Haidar, Prediction of Metal Droplet Formation in Gas Metal Arc Welding. II, J. Appl. Phys., 1998, 84, p 3530–3540CrossRef J. Haidar, Prediction of Metal Droplet Formation in Gas Metal Arc Welding. II, J. Appl. Phys., 1998, 84, p 3530–3540CrossRef
17.
go back to reference J. Haidar, An Analysis of Heat Transfer and Fume Production in Gas Metal Arc Welding. III, J. Appl. Phys., 1998, 85, p 3448–3459CrossRef J. Haidar, An Analysis of Heat Transfer and Fume Production in Gas Metal Arc Welding. III, J. Appl. Phys., 1998, 85, p 3448–3459CrossRef
18.
go back to reference Z. Bingul and G.E. Cook, Dynamic Modeling of GMAW Process, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Vol. 4, p 3059–3064 Z. Bingul and G.E. Cook, Dynamic Modeling of GMAW Process, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Vol. 4, p 3059–3064
19.
go back to reference Z. Bingul and G.E. Cook, A Real-Time Prediction Model of Electrode Extension for GMAW, IEEE/ASME Trans. Mechatron., 2006, 11, p 47–54CrossRef Z. Bingul and G.E. Cook, A Real-Time Prediction Model of Electrode Extension for GMAW, IEEE/ASME Trans. Mechatron., 2006, 11, p 47–54CrossRef
20.
go back to reference T.P. Quinn, R.B. Madigan, and T.A. Siewert, An Electrode Extension Model for Gas Metal Arc Welding, Weld. J., 1994, 73, p 241–248 T.P. Quinn, R.B. Madigan, and T.A. Siewert, An Electrode Extension Model for Gas Metal Arc Welding, Weld. J., 1994, 73, p 241–248
21.
go back to reference J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B, 1984, 15, p 299–305 J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B, 1984, 15, p 299–305
22.
go back to reference N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources, Weld. J., 1999, 78, p 265–274 N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources, Weld. J., 1999, 78, p 265–274
23.
go back to reference M. Grujicic, R. Galgalikar, J.S. Snipes, R. Yavari, S. Ramaswami, Multi-Physics Modeling of the Fabrication and Dynamic Performance of All-Metal Auxetic-Hexagonal Sandwich-Structures, Mater. Design, 2013, 51, p 113–130. doi:10.1016/j.matdes.2013.04.004 M. Grujicic, R. Galgalikar, J.S. Snipes, R. Yavari, S. Ramaswami, Multi-Physics Modeling of the Fabrication and Dynamic Performance of All-Metal Auxetic-Hexagonal Sandwich-Structures, Mater. Design, 2013, 51, p 113–130. doi:10.​1016/​j.​matdes.​2013.​04.​004
24.
go back to reference S. Ohring and H.J. Lugt, Numerical Simulation of a Time-Dependent 3-D GMA Weld Pool Due to a Moving Arc, Weld. J., 1999, 78, p 416–424 S. Ohring and H.J. Lugt, Numerical Simulation of a Time-Dependent 3-D GMA Weld Pool Due to a Moving Arc, Weld. J., 1999, 78, p 416–424
25.
go back to reference G.M. Oreper, T.W. Eagar, and J. Szekely, Convection in Arc Weld Pools, Weld. J. Res. Suppl., 1983, 62, p 307–312 G.M. Oreper, T.W. Eagar, and J. Szekely, Convection in Arc Weld Pools, Weld. J. Res. Suppl., 1983, 62, p 307–312
26.
go back to reference S.Y. Lee and S.J. Na, Numerical Analysis of Molten Pool Convection Considering Geometric Parameters of Cathode and Anode, Weld. J., 1997, 76, p 484–497 S.Y. Lee and S.J. Na, Numerical Analysis of Molten Pool Convection Considering Geometric Parameters of Cathode and Anode, Weld. J., 1997, 76, p 484–497
27.
go back to reference Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Weld. J., 2004, 83, p 169–176 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Weld. J., 2004, 83, p 169–176
28.
go back to reference J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, Int. J. Heat Mass Transf., 2007, 50, p 833–846CrossRef J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, Int. J. Heat Mass Transf., 2007, 50, p 833–846CrossRef
29.
go back to reference J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part II: The Metal, Int. J. Heat Mass Transf., 2007, 50, p 808–820CrossRef J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part II: The Metal, Int. J. Heat Mass Transf., 2007, 50, p 808–820CrossRef
30.
go back to reference S.J. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef S.J. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef
31.
go back to reference Y.-A. Song, S. Park, and S.-W. Chae, 3D Welding and Milling: Part II—Optimization of the 3D Welding Process Using an Experimental Design Approach, Int. J. Mach. Tools Manuf., 2005, 45, p 1063–1069CrossRef Y.-A. Song, S. Park, and S.-W. Chae, 3D Welding and Milling: Part II—Optimization of the 3D Welding Process Using an Experimental Design Approach, Int. J. Mach. Tools Manuf., 2005, 45, p 1063–1069CrossRef
32.
go back to reference V. Pavelic, R. Tanbakuchi, O.A. Uyehara, and P.S. Myers, Experimental and Computed Temperature Histories in Gas Tungsten-Arc Welding of Thin Plates, Weld. J. Res. Suppl., 1969, 48, p 295–305 V. Pavelic, R. Tanbakuchi, O.A. Uyehara, and P.S. Myers, Experimental and Computed Temperature Histories in Gas Tungsten-Arc Welding of Thin Plates, Weld. J. Res. Suppl., 1969, 48, p 295–305
33.
go back to reference D. Kim, “Prediction of Microstructure Evolution of Heat-Affected Zone in Gas Metal Arc Welding of Steels,” Ph.D. dissertation, University of Texas, Austin, 2012 D. Kim, “Prediction of Microstructure Evolution of Heat-Affected Zone in Gas Metal Arc Welding of Steels,” Ph.D. dissertation, University of Texas, Austin, 2012
34.
go back to reference M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef
35.
go back to reference M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef
36.
go back to reference M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef
37.
go back to reference M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef
38.
go back to reference M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef
39.
go back to reference M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef
40.
go back to reference M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796 M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796
41.
go back to reference M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef
42.
go back to reference M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef
43.
go back to reference G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, 1983 G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, 1983
44.
go back to reference ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011 ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011
45.
go back to reference MIL STD-A46100 Standard Specification, 1983: Armor Plate Steel Wrought High Hardness MIL STD-A46100 Standard Specification, 1983: Armor Plate Steel Wrought High Hardness
46.
go back to reference J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad-Based Thermocalc and Dictra Method, Calphad, 2002, 26, p 273–312CrossRef J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad-Based Thermocalc and Dictra Method, Calphad, 2002, 26, p 273–312CrossRef
47.
go back to reference H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft, A Model for the Development of Microstructure in Low-Alloy Steel (Fe-Mn-Si-C) Weld Deposits, Acta Metall., 1985, 33, p 1271–1283CrossRef H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft, A Model for the Development of Microstructure in Low-Alloy Steel (Fe-Mn-Si-C) Weld Deposits, Acta Metall., 1985, 33, p 1271–1283CrossRef
48.
go back to reference S.J. Jones and H.K.D.H. Bhadeshia, Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products, Acta Mater., 1997, 45, p 2911–2920CrossRef S.J. Jones and H.K.D.H. Bhadeshia, Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products, Acta Mater., 1997, 45, p 2911–2920CrossRef
49.
go back to reference H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the Bainite Transformation, Proc. R. Soc. Lond. A, 2004, 460, p 1707–1722CrossRef H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the Bainite Transformation, Proc. R. Soc. Lond. A, 2004, 460, p 1707–1722CrossRef
50.
go back to reference P. Kruger, On the Relation Between Non-Isothermal and Isothermal Kolmogorov-Johnson-Mehl-Avrami Crystallization Kinetics, J. Phys. Chem. Solids, 1993, 54, p 1549–1555CrossRef P. Kruger, On the Relation Between Non-Isothermal and Isothermal Kolmogorov-Johnson-Mehl-Avrami Crystallization Kinetics, J. Phys. Chem. Solids, 1993, 54, p 1549–1555CrossRef
51.
go back to reference M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12, p 219–224CrossRef M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12, p 219–224CrossRef
52.
go back to reference M. Grujicic, Thermodynamics-Aided Design of High Co-Ni Secondary Hardening Steels, Calphad, 1990, 14, p 49–59CrossRef M. Grujicic, Thermodynamics-Aided Design of High Co-Ni Secondary Hardening Steels, Calphad, 1990, 14, p 49–59CrossRef
53.
go back to reference G.M. Ludtka, G.M. Ludtka, P. Ray, and J. Magee, “Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets,” Final CRADA Report for CRADA Number NFE-09-02189, Oak Ridge National Laboratory, 2010 G.M. Ludtka, G.M. Ludtka, P. Ray, and J. Magee, “Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets,” Final CRADA Report for CRADA Number NFE-09-02189, Oak Ridge National Laboratory, 2010
54.
go back to reference J.C. Ion, K.E. Easterling, and M.F. Ashby, A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds, Acta Metall., 1984, 32, p 1949–1955CrossRef J.C. Ion, K.E. Easterling, and M.F. Ashby, A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds, Acta Metall., 1984, 32, p 1949–1955CrossRef
55.
go back to reference P. Maynier, B. Jungmann, and J.D. Creusot-Loire, System for the Prediction of the Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p 518–545 P. Maynier, B. Jungmann, and J.D. Creusot-Loire, System for the Prediction of the Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p 518–545
56.
go back to reference M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef
57.
go back to reference M. Grujicic, G. Cao and P.F. Joseph, Multi-Scale Modeling of Deformation and Fracture of Polycrystalline Lamellar γ-TiAl + α2-Ti3Al Alloys, Int. J. Multiscale Comput. Eng., 2003, 1, p 1–21 M. Grujicic, G. Cao and P.F. Joseph, Multi-Scale Modeling of Deformation and Fracture of Polycrystalline Lamellar γ-TiAl + α2-Ti3Al Alloys, Int. J. Multiscale Comput. Eng., 2003, 1, p 1–21
58.
go back to reference R.S. Miller, G. Cao and M. Grujicic, Monte Carlo Simulation of Three-Dimensional Non-Isothermal Grain-Microstructure Evolution: Application to LENS™ Rapid Fabrication, J. Mater. Synth. Proces., 2001, 9, p 329–345 R.S. Miller, G. Cao and M. Grujicic, Monte Carlo Simulation of Three-Dimensional Non-Isothermal Grain-Microstructure Evolution: Application to LENS™ Rapid Fabrication, J. Mater. Synth. Proces., 2001, 9, p 329–345
Metadata
Title
Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process
Authors
M. Grujicic
S. Ramaswami
J. S. Snipes
C.-F. Yen
B. A. Cheeseman
J. S. Montgomery
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2013
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0583-2

Other articles of this Issue 10/2013

Journal of Materials Engineering and Performance 10/2013 Go to the issue

Premium Partners