Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2013

01.10.2013

Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process

verfasst von: M. Grujicic, S. Ramaswami, J. S. Snipes, C.-F. Yen, B. A. Cheeseman, J. S. Montgomery

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, LAV Armor Plate Study, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992 M.G.H. Wells, R.K. Weiss, and J.S. Montgomery, LAV Armor Plate Study, MTL TR 92-26, U.S. Army Materials Technology Laboratory, Watertown, MA, 1992
2.
Zurück zum Zitat J.G. Holmes and B.J. Resnick, Flexible Robot Arc Welding System, Soc. Manuf. Eng., 1979, MS (79) J.G. Holmes and B.J. Resnick, Flexible Robot Arc Welding System, Soc. Manuf. Eng., 1979, MS (79)
3.
Zurück zum Zitat U.S. Environmental Protection Agency, AP 42, Fifth Edition: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Washington, 1995, p 12.19-1–12.19-3 U.S. Environmental Protection Agency, AP 42, Fifth Edition: Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, U.S. Environmental Protection Agency, Washington, 1995, p 12.19-1–12.19-3
4.
Zurück zum Zitat A.D. Althouse, C.H. Turnquist, W.A. Bowditch, K.E. Bowditch, and M.A. Bowditch, Modern Welding, 10th ed., Goodheart-Willcox Publisher, Tinley Park, IL, 2004, p 233–265 A.D. Althouse, C.H. Turnquist, W.A. Bowditch, K.E. Bowditch, and M.A. Bowditch, Modern Welding, 10th ed., Goodheart-Willcox Publisher, Tinley Park, IL, 2004, p 233–265
5.
Zurück zum Zitat M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012. doi:10.1007/s11665-012-0402-1 M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C-F. Yen, and B.A. Cheeseman, Computational Modeling of Microstructure Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding, J. Mater. Eng. Perform., 2012. doi:10.​1007/​s11665-012-0402-1
6.
Zurück zum Zitat M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C-F. Yen, B.A. Cheeseman and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557. doi:10.1007/s11665-012-0445-3 M. Grujicic, A. Arakere, S. Ramaswami, J.S. Snipes, R. Yavari, C-F. Yen, B.A. Cheeseman and J.S. Montgomery, Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel, J. Mater. Eng. Perform., 2013, 22, p 1541–1557. doi:10.​1007/​s11665-012-0445-3
7.
Zurück zum Zitat W. Zhang, J.W. Elmer, and T. DebRoy, Modeling and Real Time Mapping of Phases During GTA Welding of 1005 Steel, Mater. Sci. Eng. A, 2002, 333, p 320–335CrossRef W. Zhang, J.W. Elmer, and T. DebRoy, Modeling and Real Time Mapping of Phases During GTA Welding of 1005 Steel, Mater. Sci. Eng. A, 2002, 333, p 320–335CrossRef
8.
Zurück zum Zitat Ø. Grong, Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997 Ø. Grong, Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997
9.
Zurück zum Zitat K. Easterling, Introduction to the Physical Metallurgy of Welding, 2nd ed., Butterworth Heinemann, Boston, 1992 K. Easterling, Introduction to the Physical Metallurgy of Welding, 2nd ed., Butterworth Heinemann, Boston, 1992
10.
Zurück zum Zitat L.-E. Svensson, Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, 1994 L.-E. Svensson, Control of Microstructures and Properties in Steel Arc Welds, CRC Press, Boca Raton, 1994
11.
Zurück zum Zitat R. Mancini and C. Budde, Reaustenitisation in Fe-C Steels Revisited, Acta Mater., 1999, 47, p 2907–2911CrossRef R. Mancini and C. Budde, Reaustenitisation in Fe-C Steels Revisited, Acta Mater., 1999, 47, p 2907–2911CrossRef
12.
Zurück zum Zitat R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root, Determination of Reaustenitisation Kinetics in a Fe-0.4C Steel Using Dilatometry and Neutron Diffraction, Mater. Sci. Eng. A, 1998, 256, p 152–165CrossRef R.C. Reed, T. Akbay, Z. Shen, J.M. Robinson, and J.H. Root, Determination of Reaustenitisation Kinetics in a Fe-0.4C Steel Using Dilatometry and Neutron Diffraction, Mater. Sci. Eng. A, 1998, 256, p 152–165CrossRef
13.
Zurück zum Zitat J.H. Valentich, Tube Type Dilatometers: Applications from Cryogenic to Elevated Temperatures, Instrument Society of America, Research Triangle Park, NC, 1981 J.H. Valentich, Tube Type Dilatometers: Applications from Cryogenic to Elevated Temperatures, Instrument Society of America, Research Triangle Park, NC, 1981
14.
Zurück zum Zitat K.L. Moore, D.S. Naidu, R. Yender, and J. Tyler, Gas Metal Arc Welding Control: Part I—Modeling and Analysis, Nonlinear Anal. Theory, Methods Appl., 1997, 30, p 3101–3111CrossRef K.L. Moore, D.S. Naidu, R. Yender, and J. Tyler, Gas Metal Arc Welding Control: Part I—Modeling and Analysis, Nonlinear Anal. Theory, Methods Appl., 1997, 30, p 3101–3111CrossRef
15.
Zurück zum Zitat J. Haidar, A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding. I, J. Appl. Phys., 1998, 84, p 3518–3529CrossRef J. Haidar, A Theoretical Model for Gas Metal Arc Welding and Gas Tungsten Arc Welding. I, J. Appl. Phys., 1998, 84, p 3518–3529CrossRef
16.
Zurück zum Zitat J. Haidar, Prediction of Metal Droplet Formation in Gas Metal Arc Welding. II, J. Appl. Phys., 1998, 84, p 3530–3540CrossRef J. Haidar, Prediction of Metal Droplet Formation in Gas Metal Arc Welding. II, J. Appl. Phys., 1998, 84, p 3530–3540CrossRef
17.
Zurück zum Zitat J. Haidar, An Analysis of Heat Transfer and Fume Production in Gas Metal Arc Welding. III, J. Appl. Phys., 1998, 85, p 3448–3459CrossRef J. Haidar, An Analysis of Heat Transfer and Fume Production in Gas Metal Arc Welding. III, J. Appl. Phys., 1998, 85, p 3448–3459CrossRef
18.
Zurück zum Zitat Z. Bingul and G.E. Cook, Dynamic Modeling of GMAW Process, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Vol. 4, p 3059–3064 Z. Bingul and G.E. Cook, Dynamic Modeling of GMAW Process, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Vol. 4, p 3059–3064
19.
Zurück zum Zitat Z. Bingul and G.E. Cook, A Real-Time Prediction Model of Electrode Extension for GMAW, IEEE/ASME Trans. Mechatron., 2006, 11, p 47–54CrossRef Z. Bingul and G.E. Cook, A Real-Time Prediction Model of Electrode Extension for GMAW, IEEE/ASME Trans. Mechatron., 2006, 11, p 47–54CrossRef
20.
Zurück zum Zitat T.P. Quinn, R.B. Madigan, and T.A. Siewert, An Electrode Extension Model for Gas Metal Arc Welding, Weld. J., 1994, 73, p 241–248 T.P. Quinn, R.B. Madigan, and T.A. Siewert, An Electrode Extension Model for Gas Metal Arc Welding, Weld. J., 1994, 73, p 241–248
21.
Zurück zum Zitat J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B, 1984, 15, p 299–305 J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B, 1984, 15, p 299–305
22.
Zurück zum Zitat N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources, Weld. J., 1999, 78, p 265–274 N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, and Y. Maeda, Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources, Weld. J., 1999, 78, p 265–274
23.
Zurück zum Zitat M. Grujicic, R. Galgalikar, J.S. Snipes, R. Yavari, S. Ramaswami, Multi-Physics Modeling of the Fabrication and Dynamic Performance of All-Metal Auxetic-Hexagonal Sandwich-Structures, Mater. Design, 2013, 51, p 113–130. doi:10.1016/j.matdes.2013.04.004 M. Grujicic, R. Galgalikar, J.S. Snipes, R. Yavari, S. Ramaswami, Multi-Physics Modeling of the Fabrication and Dynamic Performance of All-Metal Auxetic-Hexagonal Sandwich-Structures, Mater. Design, 2013, 51, p 113–130. doi:10.​1016/​j.​matdes.​2013.​04.​004
24.
Zurück zum Zitat S. Ohring and H.J. Lugt, Numerical Simulation of a Time-Dependent 3-D GMA Weld Pool Due to a Moving Arc, Weld. J., 1999, 78, p 416–424 S. Ohring and H.J. Lugt, Numerical Simulation of a Time-Dependent 3-D GMA Weld Pool Due to a Moving Arc, Weld. J., 1999, 78, p 416–424
25.
Zurück zum Zitat G.M. Oreper, T.W. Eagar, and J. Szekely, Convection in Arc Weld Pools, Weld. J. Res. Suppl., 1983, 62, p 307–312 G.M. Oreper, T.W. Eagar, and J. Szekely, Convection in Arc Weld Pools, Weld. J. Res. Suppl., 1983, 62, p 307–312
26.
Zurück zum Zitat S.Y. Lee and S.J. Na, Numerical Analysis of Molten Pool Convection Considering Geometric Parameters of Cathode and Anode, Weld. J., 1997, 76, p 484–497 S.Y. Lee and S.J. Na, Numerical Analysis of Molten Pool Convection Considering Geometric Parameters of Cathode and Anode, Weld. J., 1997, 76, p 484–497
27.
Zurück zum Zitat Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Weld. J., 2004, 83, p 169–176 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Weld. J., 2004, 83, p 169–176
28.
Zurück zum Zitat J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, Int. J. Heat Mass Transf., 2007, 50, p 833–846CrossRef J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part I: The Arc, Int. J. Heat Mass Transf., 2007, 50, p 833–846CrossRef
29.
Zurück zum Zitat J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part II: The Metal, Int. J. Heat Mass Transf., 2007, 50, p 808–820CrossRef J. Hu and H.L. Tsai, Heat and Mass Transfer in Gas Metal Arc Welding. Part II: The Metal, Int. J. Heat Mass Transf., 2007, 50, p 808–820CrossRef
30.
Zurück zum Zitat S.J. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef S.J. Unfried, C.M. Garzón, and J.E. Giraldo, Numerical and Experimental Analysis of Microstructure Evolution During Arc Welding in Armor Plate Steels, J. Mater. Process. Technol., 2009, 209, p 1688–1700CrossRef
31.
Zurück zum Zitat Y.-A. Song, S. Park, and S.-W. Chae, 3D Welding and Milling: Part II—Optimization of the 3D Welding Process Using an Experimental Design Approach, Int. J. Mach. Tools Manuf., 2005, 45, p 1063–1069CrossRef Y.-A. Song, S. Park, and S.-W. Chae, 3D Welding and Milling: Part II—Optimization of the 3D Welding Process Using an Experimental Design Approach, Int. J. Mach. Tools Manuf., 2005, 45, p 1063–1069CrossRef
32.
Zurück zum Zitat V. Pavelic, R. Tanbakuchi, O.A. Uyehara, and P.S. Myers, Experimental and Computed Temperature Histories in Gas Tungsten-Arc Welding of Thin Plates, Weld. J. Res. Suppl., 1969, 48, p 295–305 V. Pavelic, R. Tanbakuchi, O.A. Uyehara, and P.S. Myers, Experimental and Computed Temperature Histories in Gas Tungsten-Arc Welding of Thin Plates, Weld. J. Res. Suppl., 1969, 48, p 295–305
33.
Zurück zum Zitat D. Kim, “Prediction of Microstructure Evolution of Heat-Affected Zone in Gas Metal Arc Welding of Steels,” Ph.D. dissertation, University of Texas, Austin, 2012 D. Kim, “Prediction of Microstructure Evolution of Heat-Affected Zone in Gas Metal Arc Welding of Steels,” Ph.D. dissertation, University of Texas, Austin, 2012
34.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, and C. Fountzoulas, Computational Analysis and Experimental Validation of the Ti-6Al-4V Friction Stir Welding Behavior, J. Eng. Manuf., 2010, 224, p 1–16CrossRef
35.
Zurück zum Zitat M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of AA5083, J. Eng. Manuf., 2010, 224, p 609–625CrossRef
36.
Zurück zum Zitat M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef M. Grujicic, G. Arakere, H.V. Yalavarthy, T. He, C.-F. Yen, and B.A. Cheeseman, Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding, J. Mater. Eng. Perform., 2010, 19, p 672–684CrossRef
37.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, and B.A. Cheeseman, Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicle Structures, J. Mater. Eng. Perform., 2011, 20, p 11–23CrossRef
38.
Zurück zum Zitat M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef M. Grujicic, G. Arakere, C.-F. Yen, and B.A. Cheeseman, Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys, J. Mater. Eng. Perform., 2011, 20, p 1097–1108CrossRef
39.
Zurück zum Zitat M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures, J. Mater. Eng. Perform., 2012, 21, p 437–449CrossRef
40.
Zurück zum Zitat M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796 M. Grujicic, G. Arakere, A. Hariharan, and B. Pandurangan, Two-Level Weld-Material Homogenization Approach for Efficient Computational Analysis of Welded Structure Blast Survivability, J. Mater. Eng. Perform., 2012, 21, p 786–796
41.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef M. Grujicic, G. Arakere, B. Pandurangan, J.M. Ochterbeck, C.-F. Yen, B.A. Cheeseman, A.P. Reynolds, and M.A. Sutton, Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys, J. Mater. Eng. Perform., 2012, 21, p 1824–1840CrossRef
42.
Zurück zum Zitat M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef M. Grujicic, B. Pandurangan, C.-F. Yen, and B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses, J. Mater. Eng. Perform., 2012, 21, p 2207–2217CrossRef
43.
Zurück zum Zitat G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, 1983 G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, 1983
44.
Zurück zum Zitat ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011 ABAQUS Version 6.10EF, User Documentation, Dassault Systems, 2011
45.
Zurück zum Zitat MIL STD-A46100 Standard Specification, 1983: Armor Plate Steel Wrought High Hardness MIL STD-A46100 Standard Specification, 1983: Armor Plate Steel Wrought High Hardness
46.
Zurück zum Zitat J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad-Based Thermocalc and Dictra Method, Calphad, 2002, 26, p 273–312CrossRef J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad-Based Thermocalc and Dictra Method, Calphad, 2002, 26, p 273–312CrossRef
47.
Zurück zum Zitat H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft, A Model for the Development of Microstructure in Low-Alloy Steel (Fe-Mn-Si-C) Weld Deposits, Acta Metall., 1985, 33, p 1271–1283CrossRef H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft, A Model for the Development of Microstructure in Low-Alloy Steel (Fe-Mn-Si-C) Weld Deposits, Acta Metall., 1985, 33, p 1271–1283CrossRef
48.
Zurück zum Zitat S.J. Jones and H.K.D.H. Bhadeshia, Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products, Acta Mater., 1997, 45, p 2911–2920CrossRef S.J. Jones and H.K.D.H. Bhadeshia, Kinetics of the Simultaneous Decomposition of Austenite into Several Transformation Products, Acta Mater., 1997, 45, p 2911–2920CrossRef
49.
Zurück zum Zitat H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the Bainite Transformation, Proc. R. Soc. Lond. A, 2004, 460, p 1707–1722CrossRef H. Matsuda and H.K.D.H. Bhadeshia, Kinetics of the Bainite Transformation, Proc. R. Soc. Lond. A, 2004, 460, p 1707–1722CrossRef
50.
Zurück zum Zitat P. Kruger, On the Relation Between Non-Isothermal and Isothermal Kolmogorov-Johnson-Mehl-Avrami Crystallization Kinetics, J. Phys. Chem. Solids, 1993, 54, p 1549–1555CrossRef P. Kruger, On the Relation Between Non-Isothermal and Isothermal Kolmogorov-Johnson-Mehl-Avrami Crystallization Kinetics, J. Phys. Chem. Solids, 1993, 54, p 1549–1555CrossRef
51.
Zurück zum Zitat M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12, p 219–224CrossRef M. Grujicic and G. Haidemenopoulos, Treatment of Paraequilibrium Thermodynamics in an AF1410 Steel Using the Thermo-Calc Software and Database, Calphad, 1988, 12, p 219–224CrossRef
52.
Zurück zum Zitat M. Grujicic, Thermodynamics-Aided Design of High Co-Ni Secondary Hardening Steels, Calphad, 1990, 14, p 49–59CrossRef M. Grujicic, Thermodynamics-Aided Design of High Co-Ni Secondary Hardening Steels, Calphad, 1990, 14, p 49–59CrossRef
53.
Zurück zum Zitat G.M. Ludtka, G.M. Ludtka, P. Ray, and J. Magee, “Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets,” Final CRADA Report for CRADA Number NFE-09-02189, Oak Ridge National Laboratory, 2010 G.M. Ludtka, G.M. Ludtka, P. Ray, and J. Magee, “Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets,” Final CRADA Report for CRADA Number NFE-09-02189, Oak Ridge National Laboratory, 2010
54.
Zurück zum Zitat J.C. Ion, K.E. Easterling, and M.F. Ashby, A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds, Acta Metall., 1984, 32, p 1949–1955CrossRef J.C. Ion, K.E. Easterling, and M.F. Ashby, A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds, Acta Metall., 1984, 32, p 1949–1955CrossRef
55.
Zurück zum Zitat P. Maynier, B. Jungmann, and J.D. Creusot-Loire, System for the Prediction of the Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p 518–545 P. Maynier, B. Jungmann, and J.D. Creusot-Loire, System for the Prediction of the Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p 518–545
56.
Zurück zum Zitat M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef M. Gore, M. Grujicic, and G.B. Olson, Thermally Activated Grain Boundary Motion Through a Dispersion of Particles, Acta Metall., 1989, 37, p 2849–2854CrossRef
57.
Zurück zum Zitat M. Grujicic, G. Cao and P.F. Joseph, Multi-Scale Modeling of Deformation and Fracture of Polycrystalline Lamellar γ-TiAl + α2-Ti3Al Alloys, Int. J. Multiscale Comput. Eng., 2003, 1, p 1–21 M. Grujicic, G. Cao and P.F. Joseph, Multi-Scale Modeling of Deformation and Fracture of Polycrystalline Lamellar γ-TiAl + α2-Ti3Al Alloys, Int. J. Multiscale Comput. Eng., 2003, 1, p 1–21
58.
Zurück zum Zitat R.S. Miller, G. Cao and M. Grujicic, Monte Carlo Simulation of Three-Dimensional Non-Isothermal Grain-Microstructure Evolution: Application to LENS™ Rapid Fabrication, J. Mater. Synth. Proces., 2001, 9, p 329–345 R.S. Miller, G. Cao and M. Grujicic, Monte Carlo Simulation of Three-Dimensional Non-Isothermal Grain-Microstructure Evolution: Application to LENS™ Rapid Fabrication, J. Mater. Synth. Proces., 2001, 9, p 329–345
Metadaten
Titel
Multiphysics Modeling and Simulations of Mil A46100 Armor-Grade Martensitic Steel Gas Metal Arc Welding Process
verfasst von
M. Grujicic
S. Ramaswami
J. S. Snipes
C.-F. Yen
B. A. Cheeseman
J. S. Montgomery
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0583-2

Weitere Artikel der Ausgabe 10/2013

Journal of Materials Engineering and Performance 10/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.