Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2017

28-08-2017

Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications

Authors: Akram Hosseinian, AmirHossein Amjad, Rahim Hosseinzadeh-Khanmiri, Ebrahim Ghorbani-Kalhor, Mirzaagha Babazadeh, Esmail Vessally

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Demand for new energy storage devices stimulates efforts to develop the novel and effective composites with promising properties. For this purpose, composite materials, including carbonaceous materials such as graphene, carbon nanotube and carbon fiber and metal containing compounds have attracted an increasing attention because of better electrochemical performance as compared to their single material analogs. Here, the Nanocomposite consisting of ZIF-67 nanocrystals on reduced graphene oxide nanosheets (rGO/ZIF-67) has been prepared via a simple and facile ultrasonic route at room temperature. Electrochemical properties of the rGO/ZIF-67 and ZIF-67 were measured by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy techniques in 6 M KOH as an electrolyte. The nanocomposite of rGO/ZIF-67 showed highest specific capacitance value of 210 F/g at a current density of 1 A/g which is much higher than that of ZIF-67 at a similar current density (103.6 F/g). EIS measurements exhibited lower values of internal resistance and charge transfer resistance for the composite electrode in comparison to ZIF-67 electrode, indicating that the prepared nanocomposite has higher electrical conductivity. The prepared nanocomposite showed excellent cycling performance (80% after 1000 successive cycles at a current density of 1 A/g), indicating that the ZIF-67 nanocrystals immobilized on the surface of rGO nanosheets are beneficial to improving electrochemical properties as compared to ZIF-67 single analogs and is an appropriate candidate for supercapacitor applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
2.
go back to reference J.R. Miller, P. Simon, Electrochemical capacitors for energy storage management. Science 321, 651–652 (2008)CrossRef J.R. Miller, P. Simon, Electrochemical capacitors for energy storage management. Science 321, 651–652 (2008)CrossRef
3.
go back to reference P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, Ground nut seed like hydrophilic polypyrrole based thin film as a supercapacitor electrode. J. Mater. Sci. 27, 3499–3505 (2016) P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, Ground nut seed like hydrophilic polypyrrole based thin film as a supercapacitor electrode. J. Mater. Sci. 27, 3499–3505 (2016)
4.
go back to reference Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for Supercapacitors. J. Power Sources 279, 138–145 (2015)CrossRef Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, Y. Xu, Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for Supercapacitors. J. Power Sources 279, 138–145 (2015)CrossRef
5.
go back to reference J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)CrossRef J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001)CrossRef
6.
go back to reference M. Yu, Y. Zhang, Y. Zeng, M.S. Balogun, K. Mai, Z. Zhang, X. Lu, Y. Tong, Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 26, 4724–4729 (2014)CrossRef M. Yu, Y. Zhang, Y. Zeng, M.S. Balogun, K. Mai, Z. Zhang, X. Lu, Y. Tong, Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 26, 4724–4729 (2014)CrossRef
7.
go back to reference Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRef Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRef
8.
go back to reference K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014)CrossRef K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10, 14–31 (2014)CrossRef
9.
go back to reference Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2, 6086–6091 (2014)CrossRef Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J. Mater. Chem. A 2, 6086–6091 (2014)CrossRef
10.
go back to reference G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)CrossRef G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)CrossRef
11.
go back to reference S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)CrossRef S. Faraji, F.N. Ani, Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Sources 263, 338–360 (2014)CrossRef
12.
go back to reference J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H.E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408–5413 (2013)CrossRef J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H.E. Hoster, Y. Zhang, S. Zhang, S. Yang, Q. Yan, Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Lett. 13, 5408–5413 (2013)CrossRef
13.
go back to reference F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci. 24, 1913–1920 (2013) F. Xiao, Y. Xu, Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. J. Mater. Sci. 24, 1913–1920 (2013)
14.
go back to reference S. Shahrokhian, R. Mohammadi, M.K. Amini, In–situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: application as a new high–performance supercapacitor. Electrochim. Acta 206, 317–327 (2016)CrossRef S. Shahrokhian, R. Mohammadi, M.K. Amini, In–situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: application as a new high–performance supercapacitor. Electrochim. Acta 206, 317–327 (2016)CrossRef
15.
go back to reference M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef
16.
go back to reference F. Akbar, M. Kolahdouz, Sh.. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. E 26, 4347–4379 (2015)CrossRef F. Akbar, M. Kolahdouz, Sh.. Larimian, B. Radfar, H.H. Radamson, Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. Mater. Sci. Mater. E 26, 4347–4379 (2015)CrossRef
17.
go back to reference E. Yoo, H. Zhou, Li—air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5, 3020–3026 (2011)CrossRef E. Yoo, H. Zhou, Li—air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5, 3020–3026 (2011)CrossRef
18.
go back to reference J. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7, 9366–9374 (2013)CrossRef J. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7, 9366–9374 (2013)CrossRef
19.
go back to reference Zh..Sh.. Wu, G. Zhou, L.Ch.. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef Zh..Sh.. Wu, G. Zhou, L.Ch.. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef
20.
go back to reference H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009)CrossRef H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009)CrossRef
21.
go back to reference H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)CrossRef H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)CrossRef
22.
go back to reference H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine. Biosens. Bioelectron. 42, 426–429 (2013)CrossRef H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine. Biosens. Bioelectron. 42, 426–429 (2013)CrossRef
23.
go back to reference W. Zhang, Y. Tan, Y. GaoJianxiang, W. Hu, A. Stein, B. Tang, Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J. Appl. Electrochem. 46, 441–450 (2016)CrossRef W. Zhang, Y. Tan, Y. GaoJianxiang, W. Hu, A. Stein, B. Tang, Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J. Appl. Electrochem. 46, 441–450 (2016)CrossRef
24.
go back to reference L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2011)CrossRef L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2011)CrossRef
25.
go back to reference L. Sun, M.G. Campbell, M. Dincă, Conductive Electrically porous metal–organic frameworks. Angewandte Chemie International Edition 55, 3566–3579 (2016)CrossRef L. Sun, M.G. Campbell, M. Dincă, Conductive Electrically porous metal–organic frameworks. Angewandte Chemie International Edition 55, 3566–3579 (2016)CrossRef
26.
go back to reference Y.Zh. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6, 14354–14359 (2014)CrossRef Y.Zh. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale 6, 14354–14359 (2014)CrossRef
27.
go back to reference F. Wei, J. Jiang, G. Yu, Y. Sui, A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20–22 (2015)CrossRef F. Wei, J. Jiang, G. Yu, Y. Sui, A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Mater. Lett. 146, 20–22 (2015)CrossRef
28.
go back to reference S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015)CrossRef S. Zhong, C. Zhan, D. Cao, Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon 85, 51–59 (2015)CrossRef
29.
go back to reference W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhou, S.B. Hartono, D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196, 4123–4127 (2011) W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhou, S.B. Hartono, D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. J. Power Sources 196, 4123–4127 (2011)
30.
go back to reference K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014)CrossRef K.M. Choi, H.M. Jeong, J.H. Park, Y.B. Zhang, J.K. Kang, O.M. Yaghi, Supercapacitors of nanocrystalline metal–organic frameworks. ACS Nano 8, 7451–7457 (2014)CrossRef
31.
go back to reference W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRef W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRef
32.
go back to reference D. Zhang, H. Shi, R. Zhang, Z. Zhang, N. Wang, J. Li, B. Yuan, H. Bai, J. Zhang, Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 72, 58772–58776 (2105) D. Zhang, H. Shi, R. Zhang, Z. Zhang, N. Wang, J. Li, B. Yuan, H. Bai, J. Zhang, Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv. 72, 58772–58776 (2105)
33.
go back to reference W. Zhang, Y. Tan, Y. Gao, J. Wu, B. Tang, Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. J. Solid. State Electrochem. 19, 593–598 (2015)CrossRef W. Zhang, Y. Tan, Y. Gao, J. Wu, B. Tang, Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. J. Solid. State Electrochem. 19, 593–598 (2015)CrossRef
34.
go back to reference L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)CrossRef L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015)CrossRef
35.
go back to reference S. Shahrokhian, R. Mohammadi, E. Asadian, One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors. Int. J. Hydrogen Energy 41, 17496–17505 (2016)CrossRef S. Shahrokhian, R. Mohammadi, E. Asadian, One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors. Int. J. Hydrogen Energy 41, 17496–17505 (2016)CrossRef
36.
go back to reference C.W. Huang, H. Teng, Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. J. Electrochem. Soc. 155, A739-A744 (2008) C.W. Huang, H. Teng, Influence of carbon nanotube grafting on the impedance behavior of activated carbon capacitors. J. Electrochem. Soc. 155, A739-A744 (2008)
37.
go back to reference M. Tamaddoni Saray, H. Hosseini, Mesoporous MnNiCoO4@MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors. Electrochim. Acta 222, 505–517 (2016)CrossRef M. Tamaddoni Saray, H. Hosseini, Mesoporous MnNiCoO4@MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors. Electrochim. Acta 222, 505–517 (2016)CrossRef
Metadata
Title
Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications
Authors
Akram Hosseinian
AmirHossein Amjad
Rahim Hosseinzadeh-Khanmiri
Ebrahim Ghorbani-Kalhor
Mirzaagha Babazadeh
Esmail Vessally
Publication date
28-08-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7747-z

Other articles of this Issue 23/2017

Journal of Materials Science: Materials in Electronics 23/2017 Go to the issue