Skip to main content
Top

2017 | OriginalPaper | Chapter

13. Nanoporous Palladium Films Based Resistive Hydrogen Sensors

Authors : Shuanghong Wu, Han Zhou, Mengmeng Hao, Zhi Chen

Published in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hydrogen sensing technology is significant in many circumstances, such as in the synthesis process of ammonia and methanol, leak detection during shuttle launches and fuel cells. Palladium (Pd) has been widely used in hydrogen sensors for its noteworthy ability to absorb a large quantity of H2 and its high selective response to H2. Pd based resistive H2 sensors have attracted much attention due to their simple device structure and fabrication process. In this chapter, nanoporous Pd films have been demonstrated for hydrogen sensors using anodic aluminum oxide (AAO) template as substrate. Nanoporous Pd films based on AAOs were found to have a quick and reversible response due to their enhanced absorption and desorption of hydrogen compared with dense Pd films that usually have very slow response. The performance of hydrogen sensors depending on different post-deposition annealing temperatures of Pd films has been investigated. A response time as short as 30 s at 1% hydrogen concentration with an anneal temperature of 200°C has been obtained. Then, the sensing performance of hydrogen sensors based on nanoporous Pd supported by AAOs was enhanced by pore-widening treatment of AAO using phosphoric acid (H3PO4) as etching solution. It is demonstrated that different concentrations of H3PO4 and different pore-widening time lead to different pore-diameters of AAO, resulting in different performance of hydrogen sensors. The optimized hydrogen sensor shows a fast response time of 19 s at hydrogen concentration of 1% and a detection range of H2 concentration from 0.1% to 2% by pore-widening treatment with a time of 30 min and 5% H3PO4 concentration. A novel carbon nanotubes and Pd nanocomposite thin films was introduced for hydrogen sensors, which exhibits very fast response speed with a response time of 8 s at 2% hydrogen gas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Schwandt, D.J. Frey, Hydrogen sensing in molten aluminum using a commercial electrochemical sensor. Ionics 6, 3–4 (2000)CrossRef C. Schwandt, D.J. Frey, Hydrogen sensing in molten aluminum using a commercial electrochemical sensor. Ionics 6, 3–4 (2000)CrossRef
2.
go back to reference W.J. Buttner et al., An overview of hydrogen safety sensors and requirements. Int. J. Hydrog. Energy 36, 2462–2470 (2010)CrossRef W.J. Buttner et al., An overview of hydrogen safety sensors and requirements. Int. J. Hydrog. Energy 36, 2462–2470 (2010)CrossRef
3.
go back to reference L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, U. Banach, Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrog. Energy 35, 373–384 (2010)CrossRef L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, U. Banach, Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrog. Energy 35, 373–384 (2010)CrossRef
4.
go back to reference A. Katsuki et al., H2 selective gas sensor based on SnO2. Sensors Actuators B Chem. 52, 30–37 (1998)CrossRef A. Katsuki et al., H2 selective gas sensor based on SnO2. Sensors Actuators B Chem. 52, 30–37 (1998)CrossRef
5.
go back to reference B.S. Kang et al., AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor. J. Appl. Phy. Lett. 84, 1123 (2004)CrossRef B.S. Kang et al., AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor. J. Appl. Phy. Lett. 84, 1123 (2004)CrossRef
6.
go back to reference Y. Sakamoto et al., Hysteresis behaviour of electrical resistance of the Pd-H system measured by a gas-phase method. J. Phys. Condens. Matter 8, 10511–10520 (1996)CrossRef Y. Sakamoto et al., Hysteresis behaviour of electrical resistance of the Pd-H system measured by a gas-phase method. J. Phys. Condens. Matter 8, 10511–10520 (1996)CrossRef
7.
go back to reference T. Hübert et al., Hydrogen sensors-A review. Sensors Actuators B Chem. 157(2), 329–352 (2011)CrossRef T. Hübert et al., Hydrogen sensors-A review. Sensors Actuators B Chem. 157(2), 329–352 (2011)CrossRef
8.
go back to reference E. Lee, I. Hwang, J. Cha, H. Lee, W. Lee, J. Pak, J. Lee, B. Ju, Micromachined catalytic combustible hydrogen gas sensors. Sens. Actuators B Chem 153(2), 392–397 (2010)CrossRef E. Lee, I. Hwang, J. Cha, H. Lee, W. Lee, J. Pak, J. Lee, B. Ju, Micromachined catalytic combustible hydrogen gas sensors. Sens. Actuators B Chem 153(2), 392–397 (2010)CrossRef
9.
go back to reference R.C. Thomas, R.C. Hughes, Sensors for detecting molecular hydrogen based on Pd metal alloys. J. Electrochem. Soc. 144(9), 3245–3249 (1997)CrossRef R.C. Thomas, R.C. Hughes, Sensors for detecting molecular hydrogen based on Pd metal alloys. J. Electrochem. Soc. 144(9), 3245–3249 (1997)CrossRef
10.
go back to reference G. Ertl, J. Koch, Adsorption studies with a Pd(111) surface in Adsorption-Desorption Phenomena: Proceedings of the II International Conference, April 1971, 1971, 345-357. G. Ertl, J. Koch, Adsorption studies with a Pd(111) surface in Adsorption-Desorption Phenomena: Proceedings of the II International Conference, April 1971, 1971, 345-357.
11.
go back to reference M.Z. Jacobson, W.G. Colella, D.M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science 308(5730), 1901–1905 (2005)CrossRef M.Z. Jacobson, W.G. Colella, D.M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science 308(5730), 1901–1905 (2005)CrossRef
12.
go back to reference J. Lee, J.S. Noh, S.H. Lee, B. Song, H. Jung, W. Kim, W. Lee, Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrog. Energy 37, 7934–7939 (2012)CrossRef J. Lee, J.S. Noh, S.H. Lee, B. Song, H. Jung, W. Kim, W. Lee, Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrog. Energy 37, 7934–7939 (2012)CrossRef
13.
go back to reference J.G. Firth, A. Jones, T.A. Jones, The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame 20, 303–311 (1973)CrossRef J.G. Firth, A. Jones, T.A. Jones, The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame 20, 303–311 (1973)CrossRef
14.
go back to reference V.R. Katti, A.K. Debnath, S.C. Gadkari, S.K. Gupta, V.C. Sahni, Passivated thick film catalytic type H2 sensor operating at low temperature. Sens. Actuators B Chem. 84, 219–225 (2002)CrossRef V.R. Katti, A.K. Debnath, S.C. Gadkari, S.K. Gupta, V.C. Sahni, Passivated thick film catalytic type H2 sensor operating at low temperature. Sens. Actuators B Chem. 84, 219–225 (2002)CrossRef
15.
go back to reference E. Jones, in Solid State Gas Sensors, ed by P. Moseley, B. C. Tofield. The pellistor catalytic gas detection (Adam Hilger, Bristol, 1987), pp. 17–31 E. Jones, in Solid State Gas Sensors, ed by P. Moseley, B. C. Tofield. The pellistor catalytic gas detection (Adam Hilger, Bristol, 1987), pp. 17–31
16.
go back to reference J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108, 352–366 (2008)CrossRef J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108, 352–366 (2008)CrossRef
17.
go back to reference X. Lu et al., Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens. Actuator B 107, 812–817 (2005)CrossRef X. Lu et al., Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens. Actuator B 107, 812–817 (2005)CrossRef
18.
go back to reference L.P. Martin, A.-Q. Pham, R.S. Glass, Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175, 527–530 (2004)CrossRef L.P. Martin, A.-Q. Pham, R.S. Glass, Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175, 527–530 (2004)CrossRef
19.
go back to reference F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensors: effect of the Bi2O3 content on the H2-sensing properties. J. Am. Ceram. Soc. 78, 2301–2306 (1995)CrossRef F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensors: effect of the Bi2O3 content on the H2-sensing properties. J. Am. Ceram. Soc. 78, 2301–2306 (1995)CrossRef
20.
go back to reference S.J. Ippolito et al., Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B Chem. 108, 154–158 (2005)CrossRef S.J. Ippolito et al., Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B Chem. 108, 154–158 (2005)CrossRef
21.
go back to reference A. Lee, B. Reedy, Temperature modulation ins emiconductor gas sensing. Sens. Actuators B Chem. 60, 35–42 (1999)CrossRef A. Lee, B. Reedy, Temperature modulation ins emiconductor gas sensing. Sens. Actuators B Chem. 60, 35–42 (1999)CrossRef
22.
go back to reference J. Ravi Prakash, A.H. McDaniel, M. Horn, L. Pilione, P. Sunal, R. Messier, R.T. McGrath, F.K. Schweighardt, Hydrogen sensors: role of palladium thin film morphology. Sens. Actuators B Chem. 120, 439–446 (2007)CrossRef J. Ravi Prakash, A.H. McDaniel, M. Horn, L. Pilione, P. Sunal, R. Messier, R.T. McGrath, F.K. Schweighardt, Hydrogen sensors: role of palladium thin film morphology. Sens. Actuators B Chem. 120, 439–446 (2007)CrossRef
23.
go back to reference E. Sennik et al., Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 177, 104–107 (2016)CrossRef E. Sennik et al., Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 177, 104–107 (2016)CrossRef
24.
go back to reference S. Öztürka et al., Pd thin films on flexible substrate for hydrogen sensor. J. Alloys Compd. 674, 179–184 (2016)CrossRef S. Öztürka et al., Pd thin films on flexible substrate for hydrogen sensor. J. Alloys Compd. 674, 179–184 (2016)CrossRef
25.
go back to reference K. Potje-Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef K. Potje-Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef
26.
go back to reference S. Basu, S. Roy, C. Jacob, Ruthenium as Schottky metal for SiC-based high temperature hydrogen sensors. Mater. Technol. Hydrog. Econ. 801, 193–198 (2004) S. Basu, S. Roy, C. Jacob, Ruthenium as Schottky metal for SiC-based high temperature hydrogen sensors. Mater. Technol. Hydrog. Econ. 801, 193–198 (2004)
27.
go back to reference C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low-temperature hydrogen sensors based on Au nanoclusters and Schottky contacts on ZnO films deposited by pulsed laser deposition on Si and SiO2 substrates. IEEE Sens. J. 7, 448–454 (2007)CrossRef C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low-temperature hydrogen sensors based on Au nanoclusters and Schottky contacts on ZnO films deposited by pulsed laser deposition on Si and SiO2 substrates. IEEE Sens. J. 7, 448–454 (2007)CrossRef
28.
go back to reference M.A. Butler, Optical fibre hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009 (1984)CrossRef M.A. Butler, Optical fibre hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009 (1984)CrossRef
29.
go back to reference A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing. Meas. Sci. Technol. 17, 1124–1128 (2006)CrossRef A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing. Meas. Sci. Technol. 17, 1124–1128 (2006)CrossRef
30.
go back to reference B. Chadwick, J. Tann, M. Brungs, M. Gal, A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef B. Chadwick, J. Tann, M. Brungs, M. Gal, A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef
31.
go back to reference R.C. Hughes, W.K. Schubert, Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 71, 542–544 (1992)CrossRef R.C. Hughes, W.K. Schubert, Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 71, 542–544 (1992)CrossRef
32.
go back to reference M.K. Kumar, M.S. Ramachandra Rao, S. Ramaprabhu, Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J. Phys. D. Appl. Phys. 39, 2791–2795 (2006)CrossRef M.K. Kumar, M.S. Ramachandra Rao, S. Ramaprabhu, Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J. Phys. D. Appl. Phys. 39, 2791–2795 (2006)CrossRef
33.
go back to reference P. Kumar, L.K. Malhotra, Palladium capped samarium thin films as potential hydrogen sensors. Mater. Chem. Phys. 88, 106–109 (2004)CrossRef P. Kumar, L.K. Malhotra, Palladium capped samarium thin films as potential hydrogen sensors. Mater. Chem. Phys. 88, 106–109 (2004)CrossRef
34.
go back to reference R.K. Joshi, S. Krishnan, M. Yoshimura, A. Kumar, Pd nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196 (2009)CrossRef R.K. Joshi, S. Krishnan, M. Yoshimura, A. Kumar, Pd nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196 (2009)CrossRef
35.
go back to reference K. Yoshimura et al., New hydrogen sensor based on sputtered Mg-Ni alloy thin film. Vacuum 83, 699–702 (2009)CrossRef K. Yoshimura et al., New hydrogen sensor based on sputtered Mg-Ni alloy thin film. Vacuum 83, 699–702 (2009)CrossRef
36.
go back to reference N. Taguchi, Japan. Pat. 45-38200 (1962), 4738840 (1963) 50-23317 N. Taguchi, Japan. Pat. 45-38200 (1962), 4738840 (1963) 50-23317
37.
go back to reference S. Shukla et al., Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys. 98, 104306 (2005)CrossRef S. Shukla et al., Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys. 98, 104306 (2005)CrossRef
38.
go back to reference S. Shukla et al., Room temperature hydrogen response kinectics of nanomicro-integrated doped tin oxide sensor. Sens. Actuators B Chem. 120, 573–583 (2007)CrossRef S. Shukla et al., Room temperature hydrogen response kinectics of nanomicro-integrated doped tin oxide sensor. Sens. Actuators B Chem. 120, 573–583 (2007)CrossRef
39.
go back to reference C.-H. Han, S.-D. Han, I. Singh, T. Toupance, Micro-bead of nano-crystalline F doped SnO2 as a sensitive hydrogen gas sensor. Sens. Actuators B Chem. 109, 264–269 (2005)CrossRef C.-H. Han, S.-D. Han, I. Singh, T. Toupance, Micro-bead of nano-crystalline F doped SnO2 as a sensitive hydrogen gas sensor. Sens. Actuators B Chem. 109, 264–269 (2005)CrossRef
40.
go back to reference M.M. Jamshidi et al., Development of palladium-based hydrogen thin film sensor using silicon oxide substrate. Indian J. Phys. 87, 511–515 (2013)CrossRef M.M. Jamshidi et al., Development of palladium-based hydrogen thin film sensor using silicon oxide substrate. Indian J. Phys. 87, 511–515 (2013)CrossRef
41.
go back to reference B. Liu et al., Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators B 193, 28–34 (2014)CrossRef B. Liu et al., Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators B 193, 28–34 (2014)CrossRef
42.
go back to reference X.Q. Zeng, Y.L. Wang, H. Deng, M.L. Latimer, Z.L. Xiao, J. Pearson, W.K. Kwok, Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 4, 7443–7452 (2011)CrossRef X.Q. Zeng, Y.L. Wang, H. Deng, M.L. Latimer, Z.L. Xiao, J. Pearson, W.K. Kwok, Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 4, 7443–7452 (2011)CrossRef
43.
go back to reference J.Y. Wang, E.H. Yue, G. Yu, Y.K. Xiao, Z.Z. Chen, Preparation of Pd-Ni alloy nanowires by AAO template. Rare Metal Mater. Eng. 36, 126–129 (2007) J.Y. Wang, E.H. Yue, G. Yu, Y.K. Xiao, Z.Z. Chen, Preparation of Pd-Ni alloy nanowires by AAO template. Rare Metal Mater. Eng. 36, 126–129 (2007)
44.
go back to reference F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001)CrossRef F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001)CrossRef
45.
go back to reference N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)CrossRef N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)CrossRef
46.
go back to reference B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Response behavior of a palladium nanoparticle array based hydrogen sensor in hydrogen–nitrogen mixture. Sens. Actuators A Phys. 181, 20–24 (2012)CrossRef B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Response behavior of a palladium nanoparticle array based hydrogen sensor in hydrogen–nitrogen mixture. Sens. Actuators A Phys. 181, 20–24 (2012)CrossRef
47.
go back to reference D. Ding, Z. Chen, A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H2 sensing. Adv. Mater. 19, 1996–1999 (2007)CrossRef D. Ding, Z. Chen, A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H2 sensing. Adv. Mater. 19, 1996–1999 (2007)CrossRef
48.
go back to reference D. Ding, Z. Chen, S. Rajaputra, V. Singh, Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B Chem. 124, 12–17 (2007)CrossRef D. Ding, Z. Chen, S. Rajaputra, V. Singh, Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B Chem. 124, 12–17 (2007)CrossRef
49.
go back to reference D. Ding, Z. Chen, C. Lu, Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B Chem. 120, 182–186 (2006)CrossRef D. Ding, Z. Chen, C. Lu, Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B Chem. 120, 182–186 (2006)CrossRef
50.
go back to reference X. Yang, X. Wei, S. Wu, T. Wu, Z. Chen, S. Li, High-quality self-ordered TiO2 nanotubes on fluorine-doped tin oxide glass. J. Mater. Sci. Mater. Electron. 26, 7081 (2015)CrossRef X. Yang, X. Wei, S. Wu, T. Wu, Z. Chen, S. Li, High-quality self-ordered TiO2 nanotubes on fluorine-doped tin oxide glass. J. Mater. Sci. Mater. Electron. 26, 7081 (2015)CrossRef
51.
go back to reference M. Hao, S. Wu, H. Zhou, et al., Room-temperature and fast response hydrogen sensor based on annealed nanoporous palladium film[J]. J. Mater. Sci. 51(5), 2420–2426 (2016)CrossRef M. Hao, S. Wu, H. Zhou, et al., Room-temperature and fast response hydrogen sensor based on annealed nanoporous palladium film[J]. J. Mater. Sci. 51(5), 2420–2426 (2016)CrossRef
52.
go back to reference C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B Chem. 122, 556–559 (2007)CrossRef C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B Chem. 122, 556–559 (2007)CrossRef
53.
go back to reference F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010)CrossRef F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010)CrossRef
54.
go back to reference K.J. Laidler, Chemical Kinetics (McGraw-Hill Book Company, New York, 1965) K.J. Laidler, Chemical Kinetics (McGraw-Hill Book Company, New York, 1965)
55.
go back to reference T. Xu, M.P. Zach, Z.L. Xiao, D. Rosenmann, U. Welp, W.K. Kwok, G.W. Crabtree, Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 86, 203104 (2005)CrossRef T. Xu, M.P. Zach, Z.L. Xiao, D. Rosenmann, U. Welp, W.K. Kwok, G.W. Crabtree, Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 86, 203104 (2005)CrossRef
56.
go back to reference Z. Zhao, M.A. Carpenter, Annealing enhanced hydrogen absorption in nanocrystalline Pd Au sensing films. J. Appl. Phys. 97, 124301–124307 (2005)CrossRef Z. Zhao, M.A. Carpenter, Annealing enhanced hydrogen absorption in nanocrystalline Pd Au sensing films. J. Appl. Phys. 97, 124301–124307 (2005)CrossRef
57.
go back to reference A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B Environ. 97, 57–71 (2010)CrossRef A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B Environ. 97, 57–71 (2010)CrossRef
58.
go back to reference C. Lu, Z. Chen. Anodic Aluminum Oxide-Based Nanostructures and Devices[M] Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2011, 11(259): 235-259. C. Lu, Z. Chen. Anodic Aluminum Oxide-Based Nanostructures and Devices[M] Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2011, 11(259): 235-259.
59.
go back to reference T. Kiefer, L.G. Villanueva, F. Fargier, J. Brugger, The transition in hydrogen sensing behavior in noncontinuous palladium films [J]. Appl. Phys. Lett. 97(12), 121911 (2010)CrossRef T. Kiefer, L.G. Villanueva, F. Fargier, J. Brugger, The transition in hydrogen sensing behavior in noncontinuous palladium films [J]. Appl. Phys. Lett. 97(12), 121911 (2010)CrossRef
60.
go back to reference B.D. Adams, A. Chen, The role of palladium in a hydrogen economy [J]. Mater. Today 14(6), 282–289 (2011)CrossRef B.D. Adams, A. Chen, The role of palladium in a hydrogen economy [J]. Mater. Today 14(6), 282–289 (2011)CrossRef
61.
go back to reference L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72, 819–824 (2007)CrossRef L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72, 819–824 (2007)CrossRef
62.
go back to reference C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J. Nygård, J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108 (2001)CrossRef C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J. Nygård, J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108 (2001)CrossRef
63.
go back to reference J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater. 13, 1384 (2001)CrossRef J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater. 13, 1384 (2001)CrossRef
64.
go back to reference A. Fediai, D.A. Ryndyk, G. Cuniberti, Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method. Phys. Rev. B 91, 165404 (2015)CrossRef A. Fediai, D.A. Ryndyk, G. Cuniberti, Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method. Phys. Rev. B 91, 165404 (2015)CrossRef
65.
go back to reference I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148, 15–19 (2005)CrossRef I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148, 15–19 (2005)CrossRef
66.
go back to reference J. Sippel-Oakley, H.T. Wang, B.S. Kang, Z. Wu, F. Ren, A.G. Rinzler, S.J. Pearton, Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology 16, 2218 (2005)CrossRef J. Sippel-Oakley, H.T. Wang, B.S. Kang, Z. Wu, F. Ren, A.G. Rinzler, S.J. Pearton, Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology 16, 2218 (2005)CrossRef
67.
go back to reference S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sens. Actuators B Chem. 146, 122–128 (2010)CrossRef S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sens. Actuators B Chem. 146, 122–128 (2010)CrossRef
68.
go back to reference Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, W. Xing, Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO2/Si heterostructure. AIP Adv. 5, 027136 (2015)CrossRef Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, W. Xing, Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO2/Si heterostructure. AIP Adv. 5, 027136 (2015)CrossRef
69.
go back to reference J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef
Metadata
Title
Nanoporous Palladium Films Based Resistive Hydrogen Sensors
Authors
Shuanghong Wu
Han Zhou
Mengmeng Hao
Zhi Chen
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_13