Skip to main content
Top

2013 | OriginalPaper | Chapter

Nanostructured Hydroxyapatite Coating for Biodegradability Improvement of Magnesium-based Alloy Implant

Authors : R. Rojaee, M. H. Fathi, K. Raeissi

Published in: Advances in Bio-Mechanical Systems and Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to particular requirement for implant prostheses to mechanical stability and biocompatibility for regeneration of hard tissues injuries, bioresorbable metallic implants have attracted special place in orthopedics in recent years because of excluding secondary surgery for extracting them. While magnesium is one of the most vital elements in body metabolism and revival of harmed bones, its corrosion rate in chloride solutions such as human body fluid is too high and this matter would have unpleasant consequences as a supporting implant. In this study, a magnesium-based alloy (AZ91) was used as a substrate and coated with nanostructured hydroxyapatite (n-HA) via a sol–gel method in order to achieve releasing Mg2+ ions gradually which assists osteoblast cells to regenerate injured bones. Potentiodynamic plots revealed that the corrosion resistance behavior of the coated substrates had been increased significantly comparing with uncoated specimens. Also, in vitro immersion test evaluation in simulated body fluid solution at 37 ± 1°C within 28 days of immersion discovered significant decrease in evolved gas for n-HA coated against bare AZ91 specimens which indicated that n-HA coating has been considerably successful in developing the controlled barricade of Mg2+ ion releasing and indicated that the n-HA coating could decrease the substrate degradation rate to half versus bare substrate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Geng, F., Tan, L.L., Jin, X.X., Yang, J.Y., Yang, K.: The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. J. Mater. Sci. Mater. Med. 20, 1149–1157 (2009)CrossRef Geng, F., Tan, L.L., Jin, X.X., Yang, J.Y., Yang, K.: The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. J. Mater. Sci. Mater. Med. 20, 1149–1157 (2009)CrossRef
2.
go back to reference Yan, T., Tan, L., Xiong, D., Liu, X., Zhang, B., Yang, K.: Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater. Sci. Eng. C. 30, 740–748 (2010)CrossRef Yan, T., Tan, L., Xiong, D., Liu, X., Zhang, B., Yang, K.: Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater. Sci. Eng. C. 30, 740–748 (2010)CrossRef
3.
go back to reference Razavi, M., Fathi, M.H., Meratian, M.: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A. 527, 6938–6944 (2010)CrossRef Razavi, M., Fathi, M.H., Meratian, M.: Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater. Sci. Eng. A. 527, 6938–6944 (2010)CrossRef
4.
go back to reference Kim, S., Lee, J., Kim, Y., Riu, D., Jung, S., Lee, Y.: Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24, 1389–1398 (2003)CrossRef Kim, S., Lee, J., Kim, Y., Riu, D., Jung, S., Lee, Y.: Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24, 1389–1398 (2003)CrossRef
5.
go back to reference Dai, K.: Rational utilization of the stress shielding effect of implants. In: Poitout, D.G. (ed.) Biomechanics and Biomaterials in Orthopedics, 1st edn. Springer, New york (2004) Dai, K.: Rational utilization of the stress shielding effect of implants. In: Poitout, D.G. (ed.) Biomechanics and Biomaterials in Orthopedics, 1st edn. Springer, New york (2004)
6.
go back to reference Hulskes, R.: Stress shielding and bone resorption in THA : clinical versus computer-simulation studies. Acta Orthop. Belg. 59(1), 118–129 (1993) Hulskes, R.: Stress shielding and bone resorption in THA : clinical versus computer-simulation studies. Acta Orthop. Belg. 59(1), 118–129 (1993)
7.
go back to reference Sealy, M.P., Guo, Y.B.: Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. J. Mech. Behav. Biomed. Mater. 3, 488–496 (2010)CrossRef Sealy, M.P., Guo, Y.B.: Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. J. Mech. Behav. Biomed. Mater. 3, 488–496 (2010)CrossRef
8.
go back to reference Li, Z., Gu, X., Lou, S., Zheng, Y.: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)CrossRef Li, Z., Gu, X., Lou, S., Zheng, Y.: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)CrossRef
9.
go back to reference Song, G.L., Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999)CrossRef Song, G.L., Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11–33 (1999)CrossRef
10.
go back to reference Razavi, M., Fathi, M.H., Meratian, M.: Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett. 64, 2487–2490 (2010)CrossRef Razavi, M., Fathi, M.H., Meratian, M.: Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications. Mater. Lett. 64, 2487–2490 (2010)CrossRef
11.
go back to reference Yang, J., Cui, F., Lee, I.: Plasma surface modification of magnesium alloy for biomedical application. Surf. Coat. Technol. 205, S182–S187 (2010)CrossRef Yang, J., Cui, F., Lee, I.: Plasma surface modification of magnesium alloy for biomedical application. Surf. Coat. Technol. 205, S182–S187 (2010)CrossRef
12.
go back to reference Fathi, M.H., Hanifi, A.: Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater. Lett. 61, 3978–3983 (2007)CrossRef Fathi, M.H., Hanifi, A.: Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater. Lett. 61, 3978–3983 (2007)CrossRef
13.
go back to reference Bose, S., Dasgupta, S., Tarafder, S., Bandyopadhyay, A.: Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6, 3782–3790 (2010)CrossRef Bose, S., Dasgupta, S., Tarafder, S., Bandyopadhyay, A.: Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6, 3782–3790 (2010)CrossRef
14.
go back to reference Mohammadi Zahrani, E., Fathi, M.H., Alfantazi, A.M.: Sol-gel derived nanocrystalline fluoridated hydroxyapatite powders and nanostructured coatings for tissue engineering applications. Metall. Mater. Trans. A. 42, 3291–3309 (2010)CrossRef Mohammadi Zahrani, E., Fathi, M.H., Alfantazi, A.M.: Sol-gel derived nanocrystalline fluoridated hydroxyapatite powders and nanostructured coatings for tissue engineering applications. Metall. Mater. Trans. A. 42, 3291–3309 (2010)CrossRef
15.
go back to reference Ratner, B., Haffman, A. S., Schoen, F. J., Lemons, J. E.: Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. Elsevier Academic Press, New york (1996) Ratner, B., Haffman, A. S., Schoen, F. J., Lemons, J. E.: Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. Elsevier Academic Press, New york (1996)
16.
go back to reference Fathi, M.H., Hanifi, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536–542 (2008)CrossRef Fathi, M.H., Hanifi, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536–542 (2008)CrossRef
17.
go back to reference Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009)CrossRef Bohner, M., Lemaitre, J.: Can bioactivity be tested in vitro with SBF solution? Biomaterials 30, 2175–2179 (2009)CrossRef
18.
go back to reference Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)CrossRef Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)CrossRef
19.
go back to reference Fathi, M.H., Doostmohammadi, A.: Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater. Sci. Eng. A. 474, 128–133 (2008)CrossRef Fathi, M.H., Doostmohammadi, A.: Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater. Sci. Eng. A. 474, 128–133 (2008)CrossRef
20.
go back to reference Stephen Tait, W.: An introduction to electrochemical corrosion testing for practicing engineers and scientists. PairDocs Publications, Racine (1994) Stephen Tait, W.: An introduction to electrochemical corrosion testing for practicing engineers and scientists. PairDocs Publications, Racine (1994)
21.
go back to reference Panda, R., Hsieh, M., Chung, R., Chin, T.S.: FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solids 64, 193–199 (2003)CrossRef Panda, R., Hsieh, M., Chung, R., Chin, T.S.: FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solids 64, 193–199 (2003)CrossRef
22.
go back to reference Tadic, D., Epple, M.: Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomaterials 24, 4565–4571 (2003)CrossRef Tadic, D., Epple, M.: Mechanically stable implants of synthetic bone mineral by cold isostatic pressing. Biomaterials 24, 4565–4571 (2003)CrossRef
23.
go back to reference Wei, M., Evans, J.H., Bostrom, T., Grøndahl, L.: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 14, 311–320 (2003)CrossRef Wei, M., Evans, J.H., Bostrom, T., Grøndahl, L.: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 14, 311–320 (2003)CrossRef
25.
go back to reference Aung, N.N., Zhou, W.: Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010)CrossRef Aung, N.N., Zhou, W.: Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010)CrossRef
26.
go back to reference Song, G.: Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49, 1696–1701 (2007)CrossRef Song, G.: Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49, 1696–1701 (2007)CrossRef
27.
go back to reference Witte, F., Hort, N., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63–72 (2008)CrossRef Witte, F., Hort, N., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63–72 (2008)CrossRef
28.
go back to reference Kokubo, T.: Design of bioactive bone substitutes based on biomineralization process. Mater. Sci. Eng C. 25, 97–104 (2005)CrossRef Kokubo, T.: Design of bioactive bone substitutes based on biomineralization process. Mater. Sci. Eng C. 25, 97–104 (2005)CrossRef
29.
go back to reference Zhang, S., Zhang, X., et al.: Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010)CrossRef Zhang, S., Zhang, X., et al.: Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010)CrossRef
Metadata
Title
Nanostructured Hydroxyapatite Coating for Biodegradability Improvement of Magnesium-based Alloy Implant
Authors
R. Rojaee
M. H. Fathi
K. Raeissi
Copyright Year
2013
DOI
https://doi.org/10.1007/978-3-319-00479-2_3