Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 11/2011

01.11.2011 | Symposium: Coatings for Structural, Biological, and Electronic Applications

Sol-Gel Derived Nanocrystalline Fluoridated Hydroxyapatite Powders and Nanostructured Coatings for Tissue Engineering Applications

verfasst von: E. Mohammadi Zahrani, M. H. Fathi, A. M. Alfantazi

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 11/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline fluoridated hydroxyapatite (FHA) powders and coatings with a chemical composition of Ca10(PO4)6OH2–x F x (where x values were selected equal to 0.0 ,0.5, 1.0, 1.5, and 2.0) were prepared through a modified simple sol-gel technique in comparison with conventional alkoxide-based sol-gel route. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, pF-meter with a fluorine-sensitive electrode, and inductively coupled plasma–optical emission spectroscopy (ICP-OES) analysis techniques were employed in order to evaluate phase composition, particle size distribution, morphology, functional groups, fluorine content, and purity of prepared FHA nanopowders, respectively. SEM analysis was used to study the surface morphology and cross section of the FHA coatings, deposited on 316L stainless steel substrate. Results indicated that single-phase and homogeneous FHA nanopowders with carbonate peaks in the FTIR spectrum were synthesized through the modified sol-gel technique. TEM analysis revealed that fluorapatite (FA) powder was composed of nanosized particles, ~25 nm in size, with polyhedron shape and straight corners. In the modified sol-gel technique, polymerization and gelation kinetic of the sol were significantly improved without any need to use additives or pH control. Uniform, dense, well-adhered, and compacted FHA coatings were formed on the 316L stainless steel substrate after 24 hours of aging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes, G. Dechambre, C. Estournès, G. Raimbeaux, and C. Rey: Powder Technol., 2009, vol. 190, pp. 118–22.CrossRef C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes, G. Dechambre, C. Estournès, G. Raimbeaux, and C. Rey: Powder Technol., 2009, vol. 190, pp. 118–22.CrossRef
2.
Zurück zum Zitat L.L. Hench and J. Wilson: Introduction to Bioceramics, World Scientific, Singapore, 1993. L.L. Hench and J. Wilson: Introduction to Bioceramics, World Scientific, Singapore, 1993.
3.
Zurück zum Zitat S. Cazalbou, C. Combes, D. Eichert, and C. Rey: J. Mater. Chem., 2004, vol. 14, pp. 2148–53.CrossRef S. Cazalbou, C. Combes, D. Eichert, and C. Rey: J. Mater. Chem., 2004, vol. 14, pp. 2148–53.CrossRef
4.
Zurück zum Zitat S. Kannan, J.H.G. Rocha, and J.M.F. Ferreira: J. Mater. Chem., 2006, vol. 16, pp. 286–91.CrossRef S. Kannan, J.H.G. Rocha, and J.M.F. Ferreira: J. Mater. Chem., 2006, vol. 16, pp. 286–91.CrossRef
5.
Zurück zum Zitat R. Murugan, T.S. Sampath, and K. Panduranga: Mater. Lett., 2002, vol. 57, pp. 429–33.CrossRef R. Murugan, T.S. Sampath, and K. Panduranga: Mater. Lett., 2002, vol. 57, pp. 429–33.CrossRef
6.
Zurück zum Zitat H.B. Pan and B.W. Darvell: Arch. Oral Biol., 2007, vol. 52, pp. 861–68.CrossRef H.B. Pan and B.W. Darvell: Arch. Oral Biol., 2007, vol. 52, pp. 861–68.CrossRef
7.
Zurück zum Zitat P. Leamy, P.W. Brown, K. Tenhuisen, and C. Randall: J. Biomed. Mater. Res., 1998, vol. 42, pp. 458–64.CrossRef P. Leamy, P.W. Brown, K. Tenhuisen, and C. Randall: J. Biomed. Mater. Res., 1998, vol. 42, pp. 458–64.CrossRef
8.
9.
Zurück zum Zitat A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, E. Bemporad, and M. Sebastiani: Ceram. Int., 2010, vol. 36, pp. 313–22.CrossRef A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, E. Bemporad, and M. Sebastiani: Ceram. Int., 2010, vol. 36, pp. 313–22.CrossRef
10.
Zurück zum Zitat Q. Xiang, Yong Liu, X. Sheng, and X. Dan: Dent. Mater., 2007, vol. 23, pp. 251–58. Q. Xiang, Yong Liu, X. Sheng, and X. Dan: Dent. Mater., 2007, vol. 23, pp. 251–58.
11.
Zurück zum Zitat S. Kannan, J.H.G. Rocha, S. Agathopoulos, and J.M.F. Ferreira: Acta Biomater., 2007, vol. 3, pp. 243–49.CrossRef S. Kannan, J.H.G. Rocha, S. Agathopoulos, and J.M.F. Ferreira: Acta Biomater., 2007, vol. 3, pp. 243–49.CrossRef
12.
Zurück zum Zitat H.U. Lee, Y.S. Jeong, S.Y. Park, S.Y. Jeong, H.G. Kim, and C.R. Cho: Curr. Appl. Phys., 2009, vol. 9, pp. 528–33.CrossRef H.U. Lee, Y.S. Jeong, S.Y. Park, S.Y. Jeong, H.G. Kim, and C.R. Cho: Curr. Appl. Phys., 2009, vol. 9, pp. 528–33.CrossRef
13.
Zurück zum Zitat H. Kim, E. Lee, H.E. Kim, V. Salih, and J.C. Knowles: Biomaterials, 2005, vol. 26, pp. 4395–404.CrossRef H. Kim, E. Lee, H.E. Kim, V. Salih, and J.C. Knowles: Biomaterials, 2005, vol. 26, pp. 4395–404.CrossRef
14.
15.
16.
Zurück zum Zitat J.R. Farley, J.E. Wergedal, and D.J. Barlink: Science, 1983, vol. 222, pp. 330–32.CrossRef J.R. Farley, J.E. Wergedal, and D.J. Barlink: Science, 1983, vol. 222, pp. 330–32.CrossRef
17.
Zurück zum Zitat B.Y. Reed, J.E. Zerwekh, and P.P. Antich: J. Bone Miner. Res., 1993, vol. 8, pp. 19–25.CrossRef B.Y. Reed, J.E. Zerwekh, and P.P. Antich: J. Bone Miner. Res., 1993, vol. 8, pp. 19–25.CrossRef
18.
Zurück zum Zitat D. Yan, A. Gurumurthy, M. Wright, T. Wayne, E.G. Loboa, and E.T. Everett: Bone, 2007, vol. 41, pp. 1036–44.CrossRef D. Yan, A. Gurumurthy, M. Wright, T. Wayne, E.G. Loboa, and E.T. Everett: Bone, 2007, vol. 41, pp. 1036–44.CrossRef
19.
Zurück zum Zitat E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, and N. Roveri: J. Inorg. Biochem., 1998, vol. 72, pp. 29–35.CrossRef E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, and N. Roveri: J. Inorg. Biochem., 1998, vol. 72, pp. 29–35.CrossRef
20.
Zurück zum Zitat E.Z. Kurmaev, S. Matsuya, S. Shin, M. Watanabe, R. Eguchi, Y. Ishiwata, T. Takeuchi, and M.J. Iwami: J. Mater. Sci.: Mater. Med., 2002, vol. 13, pp. 33–37.CrossRef E.Z. Kurmaev, S. Matsuya, S. Shin, M. Watanabe, R. Eguchi, Y. Ishiwata, T. Takeuchi, and M.J. Iwami: J. Mater. Sci.: Mater. Med., 2002, vol. 13, pp. 33–37.CrossRef
21.
Zurück zum Zitat L.M. Rodriguez-Lorenzo, J.N. Hart, and K.A. Gross: Biomaterials, 2003, vol. 24, pp. 3777–85.CrossRef L.M. Rodriguez-Lorenzo, J.N. Hart, and K.A. Gross: Biomaterials, 2003, vol. 24, pp. 3777–85.CrossRef
22.
Zurück zum Zitat Z. Lu, H. Wang, J. Zeng, and J. Liu: J. Cryst. Growth, 2009, vol. 311, pp. 4791–98.CrossRef Z. Lu, H. Wang, J. Zeng, and J. Liu: J. Cryst. Growth, 2009, vol. 311, pp. 4791–98.CrossRef
23.
Zurück zum Zitat H. Qu and M. Wei: J. Mater. Sci.: Mater. Med., 2005, vol. 16, pp. 129–33.CrossRef H. Qu and M. Wei: J. Mater. Sci.: Mater. Med., 2005, vol. 16, pp. 129–33.CrossRef
24.
Zurück zum Zitat K. Cheng, S. Zhang, and W. Weng: J. Sol-Gel Sci. Technol., 2006, vol. 38, pp. 13–37.CrossRef K. Cheng, S. Zhang, and W. Weng: J. Sol-Gel Sci. Technol., 2006, vol. 38, pp. 13–37.CrossRef
25.
Zurück zum Zitat K. Cheng, G. Han, W. Weng, H. Qu, P. Du, J. Yang, and J.M.F. Ferreira: Mater. Res. Bull., 2003, vol. 38, pp. 89–97.CrossRef K. Cheng, G. Han, W. Weng, H. Qu, P. Du, J. Yang, and J.M.F. Ferreira: Mater. Res. Bull., 2003, vol. 38, pp. 89–97.CrossRef
26.
Zurück zum Zitat K. Cheng, G. Shen, W. Weng, G. Han, J.M.F. Ferreira, and J. Yang: Mater. Lett., 2001, vol. 51, pp. 37–41.CrossRef K. Cheng, G. Shen, W. Weng, G. Han, J.M.F. Ferreira, and J. Yang: Mater. Lett., 2001, vol. 51, pp. 37–41.CrossRef
27.
Zurück zum Zitat K. Cheng, S. Zhang, and W. Weng: Surf. Coat. Technol., 2005, vol. 198, pp. 237–41.CrossRef K. Cheng, S. Zhang, and W. Weng: Surf. Coat. Technol., 2005, vol. 198, pp. 237–41.CrossRef
28.
Zurück zum Zitat J. Wang, Y. Chao, Q. Wanb, Z. Zhu, and H. Yu: Acta Biomater., 2009, vol. 5, pp. 1798–1807.CrossRef J. Wang, Y. Chao, Q. Wanb, Z. Zhu, and H. Yu: Acta Biomater., 2009, vol. 5, pp. 1798–1807.CrossRef
29.
Zurück zum Zitat M.H. Fathi and E. Mohammadi Zahrani: J. Cryst. Growth, 2009, vol. 311, pp. 1392–403.CrossRef M.H. Fathi and E. Mohammadi Zahrani: J. Cryst. Growth, 2009, vol. 311, pp. 1392–403.CrossRef
30.
Zurück zum Zitat G. Bezzi, G. Celotti, E. Landi, T.M.G. La Torretta, I. Sopyan, and A. Tampieri: Mater. Chem. Phys., 2003, vol. 78, pp. 816–24.CrossRef G. Bezzi, G. Celotti, E. Landi, T.M.G. La Torretta, I. Sopyan, and A. Tampieri: Mater. Chem. Phys., 2003, vol. 78, pp. 816–24.CrossRef
31.
Zurück zum Zitat B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing, Reading, MA, 1977. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing, Reading, MA, 1977.
32.
Zurück zum Zitat E. Landi, A. Tampieri, G. Celotti, and S. Sprio: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2377–87.CrossRef E. Landi, A. Tampieri, G. Celotti, and S. Sprio: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2377–87.CrossRef
33.
Zurück zum Zitat ASTM Standard Specification for Composition of Ceramic Hydroxyapatite for Surgical Implants, F1185–88, ASTM, Philadelphia, PA, 1988, p. 415. ASTM Standard Specification for Composition of Ceramic Hydroxyapatite for Surgical Implants, F1185–88, ASTM, Philadelphia, PA, 1988, p. 415.
34.
Zurück zum Zitat C.J. Brinker and G.W. Scherer: Sol-Gel Science, Academic Press, Boston, MA, 1990. C.J. Brinker and G.W. Scherer: Sol-Gel Science, Academic Press, Boston, MA, 1990.
35.
Zurück zum Zitat D.M. Liu, T. Troczynski, and W.J. Tseng: Biomaterials, 2001, vol. 22, pp. 1721–30.CrossRef D.M. Liu, T. Troczynski, and W.J. Tseng: Biomaterials, 2001, vol. 22, pp. 1721–30.CrossRef
36.
Zurück zum Zitat A. Bigi, E. Boanini, and K. Rubini: J. Solid State Chem., 2004, vol. 177, pp. 3092–98.CrossRef A. Bigi, E. Boanini, and K. Rubini: J. Solid State Chem., 2004, vol. 177, pp. 3092–98.CrossRef
37.
Zurück zum Zitat S. Kim and P.N. Kumta: Mater. Sci. Eng. B, 2004, vol. 111, pp. 232–36.CrossRef S. Kim and P.N. Kumta: Mater. Sci. Eng. B, 2004, vol. 111, pp. 232–36.CrossRef
38.
Zurück zum Zitat D.M. Liu, T. Troczynski, and W.J. Tseng: Biomaterials, 2002, vol. 23, pp. 1227–36.CrossRef D.M. Liu, T. Troczynski, and W.J. Tseng: Biomaterials, 2002, vol. 23, pp. 1227–36.CrossRef
39.
Zurück zum Zitat M.H. Fathi and A. Hanifi: Adv. Appl. Ceram., 2009, vol. 108, pp. 363–68.CrossRef M.H. Fathi and A. Hanifi: Adv. Appl. Ceram., 2009, vol. 108, pp. 363–68.CrossRef
40.
Zurück zum Zitat L. Calderin and M.J. Stott: Phys. Rev., 2003, vol. 67, pp. 134106–10.CrossRef L. Calderin and M.J. Stott: Phys. Rev., 2003, vol. 67, pp. 134106–10.CrossRef
41.
Zurück zum Zitat S. Cazalbou, C. Combes, D. Eichert, and C. Rey: J. Mater. Chem., 2004, vol. 14, pp. 2148–53.CrossRef S. Cazalbou, C. Combes, D. Eichert, and C. Rey: J. Mater. Chem., 2004, vol. 14, pp. 2148–53.CrossRef
42.
Zurück zum Zitat JCPDS File No. 15-0876 (Fluorapatite), Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988. JCPDS File No. 15-0876 (Fluorapatite), Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988.
43.
Zurück zum Zitat A.J. Ruys, K.A. Zeigler, O.C. Standard, A. Brandwood, B.K. Milthorpe, and C.C. Sorrell: in Proceedings for the International Ceramic Conference. AUSTCERAM-92, M.J. Bannister, ed., CSIRO, Melbourne, 1992, vol. 2, pp. 605–10. A.J. Ruys, K.A. Zeigler, O.C. Standard, A. Brandwood, B.K. Milthorpe, and C.C. Sorrell: in Proceedings for the International Ceramic Conference. AUSTCERAM-92, M.J. Bannister, ed., CSIRO, Melbourne, 1992, vol. 2, pp. 605–10.
44.
Zurück zum Zitat C.M. Lopatin, V. Pizziconi, T.L. Alford, and T. Laursen: Thin Solid Films, 1998, vol. 326, pp. 227–32.CrossRef C.M. Lopatin, V. Pizziconi, T.L. Alford, and T. Laursen: Thin Solid Films, 1998, vol. 326, pp. 227–32.CrossRef
45.
Zurück zum Zitat M. Kay, R.A. Young, and A.S. Posner: Nature, 1964, vol. 204, pp. 3056–65.CrossRef M. Kay, R.A. Young, and A.S. Posner: Nature, 1964, vol. 204, pp. 3056–65.CrossRef
46.
Zurück zum Zitat M. Wei, J.H. Evans, T. Bostrom, and L. Grndahl: J. Mater. Sci.: Mater. Med., 2003, vol. 14, pp. 311–20.CrossRef M. Wei, J.H. Evans, T. Bostrom, and L. Grndahl: J. Mater. Sci.: Mater. Med., 2003, vol. 14, pp. 311–20.CrossRef
47.
Zurück zum Zitat JCPDS File No. 09-0432 (Hydroxyapatite), Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988. JCPDS File No. 09-0432 (Hydroxyapatite), Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988.
48.
Zurück zum Zitat M.H. Fathi and E. Mohammadi Zahrani: J. Alloys Compd., 2009, vol. 475, pp. 408–14.CrossRef M.H. Fathi and E. Mohammadi Zahrani: J. Alloys Compd., 2009, vol. 475, pp. 408–14.CrossRef
49.
Zurück zum Zitat J.P. Lafon, E. Champion, and D. Bernache: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 139–47.CrossRef J.P. Lafon, E. Champion, and D. Bernache: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 139–47.CrossRef
50.
Zurück zum Zitat R. Murugan and S. Ramakrishna: J. Cryst. Growth, 2005, vol. 274, pp. 209–13.CrossRef R. Murugan and S. Ramakrishna: J. Cryst. Growth, 2005, vol. 274, pp. 209–13.CrossRef
51.
Zurück zum Zitat H. Zhang, Q. Zhu, and Z. Xie: Mater. Res. Bull., 2005, vol. 40, pp. 1326–34.CrossRef H. Zhang, Q. Zhu, and Z. Xie: Mater. Res. Bull., 2005, vol. 40, pp. 1326–34.CrossRef
52.
Zurück zum Zitat F. Freund and R.M. Knobel: Dalton Trans., J. Chem. Soc., 1977, vol. 6, pp. 1136–40.CrossRef F. Freund and R.M. Knobel: Dalton Trans., J. Chem. Soc., 1977, vol. 6, pp. 1136–40.CrossRef
53.
Zurück zum Zitat C. Rey, J.L. Miquel, L. Facchini, A.P. Legrand, and M.J. Glimcher: Bone, 1995, vol. 16, pp. 583–86.CrossRef C. Rey, J.L. Miquel, L. Facchini, A.P. Legrand, and M.J. Glimcher: Bone, 1995, vol. 16, pp. 583–86.CrossRef
54.
Zurück zum Zitat M.G. Taylor, S.F. Parker, K. Simkiss, and C.H. Mitchell: Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 1514–17.CrossRef M.G. Taylor, S.F. Parker, K. Simkiss, and C.H. Mitchell: Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 1514–17.CrossRef
55.
Zurück zum Zitat M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira, and J. Takahashi: Biomaterials, 1998, vol. 19, pp. 611–16.CrossRef M. Okazaki, H. Tohda, T. Yanagisawa, M. Taira, and J. Takahashi: Biomaterials, 1998, vol. 19, pp. 611–16.CrossRef
56.
Zurück zum Zitat J. Kazimiroff, S.R. Frankel, and R.Z. LeGeros: Bioceramics, 1996, vol. 9, pp. 169–72. J. Kazimiroff, S.R. Frankel, and R.Z. LeGeros: Bioceramics, 1996, vol. 9, pp. 169–72.
57.
Zurück zum Zitat T. Sakae, A. Ookubo, and R.Z. LeGeros: Key Eng. Mater., 2003, vol. 240, pp. 395–98.CrossRef T. Sakae, A. Ookubo, and R.Z. LeGeros: Key Eng. Mater., 2003, vol. 240, pp. 395–98.CrossRef
58.
Zurück zum Zitat F. Yao, J.P. LeGeros, and R.Z. LeGeros: Acta Biomater., 2009, vol. 5, pp. 2169–77.CrossRef F. Yao, J.P. LeGeros, and R.Z. LeGeros: Acta Biomater., 2009, vol. 5, pp. 2169–77.CrossRef
59.
Zurück zum Zitat K.A. Gross and L.M. Rodriguez-Lorenzo: Biomaterials, 2004, vol. 25, pp. 1375–84.CrossRef K.A. Gross and L.M. Rodriguez-Lorenzo: Biomaterials, 2004, vol. 25, pp. 1375–84.CrossRef
60.
Zurück zum Zitat E. Mohammadi Zahrani and M.H. Fathi: Ceram. Int., 2009, vol. 35, pp. 2311–23.CrossRef E. Mohammadi Zahrani and M.H. Fathi: Ceram. Int., 2009, vol. 35, pp. 2311–23.CrossRef
61.
Zurück zum Zitat F.M. Amanullah, K.J. Pratap, and V. Hari Babu: Mater. Sci. Eng. B, 1998, vol. 52, pp. 93–98.CrossRef F.M. Amanullah, K.J. Pratap, and V. Hari Babu: Mater. Sci. Eng. B, 1998, vol. 52, pp. 93–98.CrossRef
62.
Zurück zum Zitat K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.CrossRef K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.CrossRef
63.
Zurück zum Zitat A. Ravaglioli and A. Krajewski: Bioceramics: Materials, Properties, Applications, Chapman and Hall, London, 1992. A. Ravaglioli and A. Krajewski: Bioceramics: Materials, Properties, Applications, Chapman and Hall, London, 1992.
64.
Zurück zum Zitat K. Hwang and Y. Lim: Chemical: Surf. Coat. Technol., 1999, vol. 115, pp. 172–75.CrossRef K. Hwang and Y. Lim: Chemical: Surf. Coat. Technol., 1999, vol. 115, pp. 172–75.CrossRef
Metadaten
Titel
Sol-Gel Derived Nanocrystalline Fluoridated Hydroxyapatite Powders and Nanostructured Coatings for Tissue Engineering Applications
verfasst von
E. Mohammadi Zahrani
M. H. Fathi
A. M. Alfantazi
Publikationsdatum
01.11.2011
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 11/2011
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-010-0465-2

Weitere Artikel der Ausgabe 11/2011

Metallurgical and Materials Transactions A 11/2011 Zur Ausgabe

Symposium: Coatings for Structural, Biological and Electronic Applications

Effect of Nitrogen Content on the Microstructure and Mechanical Properties of Ti-Mo-N Coating Films

Symposium: Coatings for Structural, Biological, and Electronic Applications

Effect of Superficially Applied Y2O3 Coating on High-Temperature Corrosion Behavior of Ni-Base Superalloys

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.