Skip to main content
Top
Published in: Cognitive Neurodynamics 4/2010

01-12-2010 | Original Research

Neural coding properties based on spike timing and pattern correlation of retinal ganglion cells

Authors: Han-Yan Gong, Ying-Ying Zhang, Pei-Ji Liang, Pu-Ming Zhang

Published in: Cognitive Neurodynamics | Issue 4/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Correlation between spike trains or neurons sometimes indicates certain neural coding rules in the visual system. In this paper, the relationship between spike timing correlation and pattern correlation is discussed, and their ability to represent stimulus features is compared to examine their coding strategies not only in individual neurons but also in population. Two kinds of stimuli, natural movies and checkerboard, are used to arouse firing activities in chicken retinal ganglion cells. The spike timing correlation and pattern correlation are calculated by cross-correlation function and Lempel–Ziv distance respectively. According to the correlation values, it is demonstrated that spike trains with similar spike patterns are not necessarily concerted in firing time. Moreover, spike pattern correlation values between individual neurons’ responses reflect the difference of natural movies and checkerboard; neurons cooperate with each other with higher pattern correlation values which represent spatiotemporal correlations during response to natural movies. Spike timing does not reflect stimulus features as obvious as spike patterns, caused by their particular coding properties or physiological foundation. As a result, separating the pattern correlation out of traditional timing correlation concept uncover additional insight in neural coding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Amigo JM (2004) Estimating the entropy rate of spike trains via Lempel-Ziv complexity. Neural Comput 16:717–736CrossRefPubMed Amigo JM (2004) Estimating the entropy rate of spike trains via Lempel-Ziv complexity. Neural Comput 16:717–736CrossRefPubMed
go back to reference Berry MM (1998) Refractoriness and neural precision. J Neurosci 18(6):2200–2211PubMed Berry MM (1998) Refractoriness and neural precision. J Neurosci 18(6):2200–2211PubMed
go back to reference Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94:5411–5416CrossRefPubMed Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94:5411–5416CrossRefPubMed
go back to reference Brivanlou IH, Warland DK, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527–539CrossRefPubMed Brivanlou IH, Warland DK, Meister M (1998) Mechanisms of concerted firing among retinal ganglion cells. Neuron 20:527–539CrossRefPubMed
go back to reference Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007) Temporal precision in the neural code and the timescales of natural vision. Nature 449(6):92–96CrossRefPubMed Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB (2007) Temporal precision in the neural code and the timescales of natural vision. Nature 449(6):92–96CrossRefPubMed
go back to reference Cai CF, Zhang YY, Liu X, Liang PJ, Zhang PM (2008) Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chin Phys Lett 25(5):1595–1598CrossRef Cai CF, Zhang YY, Liu X, Liang PJ, Zhang PM (2008) Detecting determinism in firing activities of retinal ganglion cells during response to complex stimuli. Chin Phys Lett 25(5):1595–1598CrossRef
go back to reference Christen M, Kohn A, Ott T, Stoop R (2006a) Measuring spike pattern reliability with the Lempel-Ziv-distance. J Neurosci Meth 156:342–350CrossRef Christen M, Kohn A, Ott T, Stoop R (2006a) Measuring spike pattern reliability with the Lempel-Ziv-distance. J Neurosci Meth 156:342–350CrossRef
go back to reference Christen M, Nicol A, Kendrick K, Ott T, Stoop R (2006b) Odour encoding in olfactory neuronal networks beyond synchronization. NeuroReport 17(14):1499–1502CrossRefPubMed Christen M, Nicol A, Kendrick K, Ott T, Stoop R (2006b) Odour encoding in olfactory neuronal networks beyond synchronization. NeuroReport 17(14):1499–1502CrossRefPubMed
go back to reference Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nat Neurosci 1:501–507CrossRefPubMed Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nat Neurosci 1:501–507CrossRefPubMed
go back to reference De Boer E, Jongkees LB (1968) On cochlear sharpening and cross-correlation methods. Acta Oto-laryngol 65(1):97–104CrossRef De Boer E, Jongkees LB (1968) On cochlear sharpening and cross-correlation methods. Acta Oto-laryngol 65(1):97–104CrossRef
go back to reference Desbordes G, Jin J, Weng C, Lesica NA, Stanley GB, Alonso JM (2008) Timing precision in population coding of natural scenes in the early visual system. PLoS Biol 6(12):e324CrossRefPubMed Desbordes G, Jin J, Weng C, Lesica NA, Stanley GB, Alonso JM (2008) Timing precision in population coding of natural scenes in the early visual system. PLoS Biol 6(12):e324CrossRefPubMed
go back to reference Devries SH (1999) Correlated firing in rabbit retinal ganglion cells. J Neurophysiol 81:908–920PubMed Devries SH (1999) Correlated firing in rabbit retinal ganglion cells. J Neurophysiol 81:908–920PubMed
go back to reference Dong DW, Atick JJ (1995) Statistics of natural time-varying images. Netw Comput Neural Syst 6(3):345–358CrossRef Dong DW, Atick JJ (1995) Statistics of natural time-varying images. Netw Comput Neural Syst 6(3):345–358CrossRef
go back to reference Frechette ES, Sher A, Grivich MI, Petrusca D, Litke AM, Chichilnisky EJ (2005) Fidelity of the ensemble code for visual motion in primate retina. J Neurophysiol 94:119–135CrossRefPubMed Frechette ES, Sher A, Grivich MI, Petrusca D, Litke AM, Chichilnisky EJ (2005) Fidelity of the ensemble code for visual motion in primate retina. J Neurophysiol 94:119–135CrossRefPubMed
go back to reference Gerstner W, Kreiter AK, Markram H, Herz AVM (1997) Neural codes: firing rates and beyond. Proc Natl Acad Sci USA 94:12740–12741CrossRefPubMed Gerstner W, Kreiter AK, Markram H, Herz AVM (1997) Neural codes: firing rates and beyond. Proc Natl Acad Sci USA 94:12740–12741CrossRefPubMed
go back to reference Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319:1108–1111CrossRefPubMed Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319:1108–1111CrossRefPubMed
go back to reference Kaspar F, Schuster HG (1987) Easily calculable measure for the complexity of spatiotemporal patterns. Phys Rev 36(2):842–848CrossRef Kaspar F, Schuster HG (1987) Easily calculable measure for the complexity of spatiotemporal patterns. Phys Rev 36(2):842–848CrossRef
go back to reference König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7:469–485CrossRefPubMed König P, Engel AK, Roelfsema PR, Singer W (1995) How precise is neuronal synchronization? Neural Comput 7:469–485CrossRefPubMed
go back to reference Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A (2007) Measuring spike train synchrony. J Neurosci Meth 165:151–161CrossRef Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A (2007) Measuring spike train synchrony. J Neurosci Meth 165:151–161CrossRef
go back to reference Lesica NA, Stanley GB (2004) Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J Neurosci 24(47):10731–10740CrossRefPubMed Lesica NA, Stanley GB (2004) Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J Neurosci 24(47):10731–10740CrossRefPubMed
go back to reference Liu X, Zhou Y, Gong HQ, Liang PJ (2007) Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Res 1177:37–46CrossRefPubMed Liu X, Zhou Y, Gong HQ, Liang PJ (2007) Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Res 1177:37–46CrossRefPubMed
go back to reference Mastronarde DN (1983) Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J Neurophysiol 49(2):303–324PubMed Mastronarde DN (1983) Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J Neurophysiol 49(2):303–324PubMed
go back to reference Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retinal ganglion cells. Science 270(17):1207–1210CrossRefPubMed Meister M, Lagnado L, Baylor DA (1995) Concerted signaling by retinal ganglion cells. Science 270(17):1207–1210CrossRefPubMed
go back to reference Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698–701CrossRefPubMed Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698–701CrossRefPubMed
go back to reference Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophys J 7(4):419–440CrossRefPubMed Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophys J 7(4):419–440CrossRefPubMed
go back to reference Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–999CrossRefPubMed Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–999CrossRefPubMed
go back to reference Pipa G, Wheeler D, Singer W, Nikolic D (2008) NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J Comput Neurosci 25:64–88CrossRefPubMed Pipa G, Wheeler D, Singer W, Nikolic D (2008) NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J Comput Neurosci 25:64–88CrossRefPubMed
go back to reference Puchalla JL, Schneidman E, Harris RA, Berry MJ (2005) Redundancy in the population code of the retina. Neuron 46:493–504CrossRefPubMed Puchalla JL, Schneidman E, Harris RA, Berry MJ (2005) Redundancy in the population code of the retina. Neuron 46:493–504CrossRefPubMed
go back to reference Rullen RV, Thorpe SJ (2001) Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13:1255–1283CrossRefPubMed Rullen RV, Thorpe SJ (2001) Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput 13:1255–1283CrossRefPubMed
go back to reference Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(20):1007–1012CrossRefPubMed Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(20):1007–1012CrossRefPubMed
go back to reference Schnitzer MJ, Meister M (2003) Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499–511CrossRefPubMed Schnitzer MJ, Meister M (2003) Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499–511CrossRefPubMed
go back to reference Shlens J, Field GD, Gauthier JL, Greschner M, Sher S, Litke AM, Chichilnisky EJ (2009) The structure of large-scale synchronized firing in primate retina. J Neurosci 29(15):5022–5031CrossRefPubMed Shlens J, Field GD, Gauthier JL, Greschner M, Sher S, Litke AM, Chichilnisky EJ (2009) The structure of large-scale synchronized firing in primate retina. J Neurosci 29(15):5022–5031CrossRefPubMed
go back to reference Singer W (2009) Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 3:189–196CrossRefPubMed Singer W (2009) Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 3:189–196CrossRefPubMed
go back to reference Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correlation in primary visual cortex. J Neurosci 28(48):12591–12603CrossRefPubMed Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correlation in primary visual cortex. J Neurosci 28(48):12591–12603CrossRefPubMed
go back to reference Theunissen T, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2:149–162CrossRefPubMed Theunissen T, Miller JP (1995) Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci 2:149–162CrossRefPubMed
go back to reference Uzzell VJ, Chichilnisky EJ (2004) Precision of spike trains in primate retinal ganglion cells. J Neurophysiol 92:780–789CrossRefPubMed Uzzell VJ, Chichilnisky EJ (2004) Precision of spike trains in primate retinal ganglion cells. J Neurophysiol 92:780–789CrossRefPubMed
go back to reference Van Hateren JH, Van Schaaf A (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proc R Soc Lond B 265:359–366CrossRef Van Hateren JH, Van Schaaf A (1998) Independent component filters of natural images compared with simple cells in primary visual cortex. Proc R Soc Lond B 265:359–366CrossRef
go back to reference Van Steveninck RRR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275:1805–1808CrossRef Van Steveninck RRR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275:1805–1808CrossRef
go back to reference Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326PubMed Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326PubMed
go back to reference Wang GL, Huang SY, Zhang YY, Liang PJ (2007) Contrast adaptation decreases complexity in retinal ganglion cell spike trains. Chin Phys Lett 24(1):271–274CrossRef Wang GL, Huang SY, Zhang YY, Liang PJ (2007) Contrast adaptation decreases complexity in retinal ganglion cell spike trains. Chin Phys Lett 24(1):271–274CrossRef
go back to reference Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Network Comp Neural 12:255–270 Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Network Comp Neural 12:255–270
go back to reference Zhang PM, Wu JY, Zhou Y, Liang PJ, Yuan JQ (2004) Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neurosci Meth 135:55–65CrossRef Zhang PM, Wu JY, Zhou Y, Liang PJ, Yuan JQ (2004) Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neurosci Meth 135:55–65CrossRef
go back to reference Zhang YY, Jin X, Gong HQ, Liang PJ (2010) Temporal and spatial patterns of retinal ganglion cells in response to natural stimuli. Prog Biochem Biophys 37(4):389–396 Zhang YY, Jin X, Gong HQ, Liang PJ (2010) Temporal and spatial patterns of retinal ganglion cells in response to natural stimuli. Prog Biochem Biophys 37(4):389–396
go back to reference Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE T Inform Theory 24(5):530–536CrossRef Ziv J, Lempel A (1978) Compression of individual sequences via variable-rate coding. IEEE T Inform Theory 24(5):530–536CrossRef
Metadata
Title
Neural coding properties based on spike timing and pattern correlation of retinal ganglion cells
Authors
Han-Yan Gong
Ying-Ying Zhang
Pei-Ji Liang
Pu-Ming Zhang
Publication date
01-12-2010
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 4/2010
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-010-9121-1

Other articles of this Issue 4/2010

Cognitive Neurodynamics 4/2010 Go to the issue

Brief Communication

Cloud brain: a postulate