Skip to main content
Top
Published in: Foundations of Computational Mathematics 4/2014

01-08-2014

New Tools for Classifying Hamiltonian Circle Actions with Isolated Fixed Points

Authors: Leonor Godinho, Silvia Sabatini

Published in: Foundations of Computational Mathematics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For every compact almost complex manifold \((\mathsf {M},\mathsf {J})\) equipped with a \(\mathsf {J}\)-preserving circle action with isolated fixed points, a simple algebraic identity involving the first Chern class is derived. This enables us to construct an algorithm to obtain linear relations among the isotropy weights at the fixed points. Suppose that \(\mathsf {M}\) is symplectic and the action is Hamiltonian. If the manifold satisfies an extra so-called positivity condition, then this algorithm determines a family of vector spaces that contain the admissible lattices of weights. When the number of fixed points is minimal, this positivity condition is necessarily satisfied whenever \(\dim (\mathsf {M})\le 6\) and, when \(\dim (\mathsf {M})=8\), whenever the \(S^1\)-action extends to an effective Hamiltonian \(T^2\)-action, or none of the isotropy weights is \(1\). Moreover, there are no known examples with a minimal number of fixed points contradicting this condition, and their existence is related to interesting questions regarding fake projective spaces. We run the algorithm for \(\dim (\mathsf {M})\le 8\), quickly obtaining all the possible families of isotropy weights. In particular, we simplify the proofs of Ahara and Tolman for \(\dim (\mathsf {M})=6\) and, when \(\dim (\mathsf {M})=8\), we prove that the equivariant cohomology ring, Chern classes, and isotropy weights agree with those of \({\mathbb {C}}P^4\) with the standard \(S^1\)-action (thereby proving the symplectic Petrie conjecture in this setting).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this work we will always assume \(\mathsf {M}\) to be connected and the \(G\)-action to be smooth and effective, i.e., \(\cap _{x\in \mathsf {M}}G_x=\{e\}\), where \(G_x=\{g\in G\mid g\cdot x=x\}\) is the stabilizer subgroup of \(x\in \mathsf {M}\).
 
2
A chain of gradient spheres is a sequence of gradient spheres \(S_1,\ldots ,S_l\) such that the south pole of \(S_0\) is a minimum for the moment map, the north pole of \(S_{i-1}\) is the south pole of \(S_i\) for each \(1<i\le l\), and the north pole of \(S_l\) is a maximum for the moment map. A chain is nontrivial if it contains more than one sphere or if it contains one sphere whose stabilizer is nontrivial.
 
Literature
1.
go back to reference Ahara, K., 6-dimensional almost complex \(S^1\)-manifolds with \(\chi ({ M})=4\), J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 38 (1991), 47–72. Ahara, K., 6-dimensional almost complex \(S^1\)-manifolds with \(\chi ({ M})=4\), J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 38 (1991), 47–72.
2.
go back to reference Atiyah, M.F., K-theory, Advanced Book Classics, Addison-Wesley, 1989. Atiyah, M.F., K-theory, Advanced Book Classics, Addison-Wesley, 1989.
3.
go back to reference Atiyah, M.F. and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), 1–28. Atiyah, M.F. and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), 1–28.
4.
go back to reference Atiyah M.F. and F. Hirzebruch, Spin-Manifolds and Group Actions, Essays on Topology and Related Topics, Springer-Verlag, New York-Berlin (1970) 18–28. Atiyah M.F. and F. Hirzebruch, Spin-Manifolds and Group Actions, Essays on Topology and Related Topics, Springer-Verlag, New York-Berlin (1970) 18–28.
5.
go back to reference Atiyah, M.F. and G.B. Segal, The index of elliptic operators II, Ann. of Math. 87 (1968), 531–545. Atiyah, M.F. and G.B. Segal, The index of elliptic operators II, Ann. of Math. 87 (1968), 531–545.
6.
go back to reference Atiyah, M.F. and I.M. Singer, The index of elliptic operators III, Ann. of Math. 87 (1968), 564–604. Atiyah, M.F. and I.M. Singer, The index of elliptic operators III, Ann. of Math. 87 (1968), 564–604.
7.
go back to reference Berline, N. and M. Vergne, Classes caractéristiques équivariantes, formule de localisation en cohomologie équivariante. C.R. Acad. Sci. Paris 295 (1982) 539–541. Berline, N. and M. Vergne, Classes caractéristiques équivariantes, formule de localisation en cohomologie équivariante. C.R. Acad. Sci. Paris 295 (1982) 539–541.
8.
go back to reference Borisov, L., On Betti numbers and Chern classes of varieties with trivial odd cohomology groups. Preprint. arxiv:alg-geom/9703023. Borisov, L., On Betti numbers and Chern classes of varieties with trivial odd cohomology groups. Preprint. arxiv:alg-geom/9703023.
9.
go back to reference Eguchi, T., K. Hori and C.-S. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997), 71–80. Eguchi, T., K. Hori and C.-S. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997), 71–80.
10.
go back to reference Goldin, R. and S. Tolman, Towards Generalizing Schubert Calculus in the Symplectic Category, Journal of Symplectic Geometry, 7 (2009). 449–473. Goldin, R. and S. Tolman, Towards Generalizing Schubert Calculus in the Symplectic Category, Journal of Symplectic Geometry, 7 (2009). 449–473.
11.
go back to reference Guillemin, V., V. Ginzburg and Y. Karshon, Moment maps, Cobordism, and Hamiltonian Group Actions, Amer. Math. Soc., Mathematical Surveys and Monographs, Vol. 98, 2003. Guillemin, V., V. Ginzburg and Y. Karshon, Moment maps, Cobordism, and Hamiltonian Group Actions, Amer. Math. Soc., Mathematical Surveys and Monographs, Vol. 98, 2003.
12.
go back to reference Goresky, M., R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83. Goresky, M., R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.
13.
go back to reference Gusein-Zade, S.M., On the action of a circle on manifolds, (Russian) Mat. Zametki 10 (1971), 511–518. English translation: Math. Notes 10 (1972), 731–734. Gusein-Zade, S.M., On the action of a circle on manifolds, (Russian) Mat. Zametki 10 (1971), 511–518. English translation: Math. Notes 10 (1972), 731–734.
14.
go back to reference Gusein-Zade, S.M., \(U\)-actions of a circle and fixed points, Math. USSR Izvestija 5 (1971), 1127–1143. Gusein-Zade, S.M., \(U\)-actions of a circle and fixed points, Math. USSR Izvestija 5 (1971), 1127–1143.
15.
go back to reference Guillemin, V. and S. Sternberg, Supersymmetry and equivariant de Rham theory. Mathematics Past and Present. Springer-Verlag, Berlin, 1999. Guillemin, V. and S. Sternberg, Supersymmetry and equivariant de Rham theory. Mathematics Past and Present. Springer-Verlag, Berlin, 1999.
16.
go back to reference Guillemin, V. and C. Zara, Combinatorial formulas for products of Thom classes, Geometry, mechanics, and dynamics, 363–405, Springer NY, 2002. Guillemin, V. and C. Zara, Combinatorial formulas for products of Thom classes, Geometry, mechanics, and dynamics, 363–405, Springer NY, 2002.
17.
go back to reference Hattori A. \(S^1\)-actions on unitary manifolds and quasi-ample line bundles. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 31 (1984), 433–486. Hattori A. \(S^1\)-actions on unitary manifolds and quasi-ample line bundles. J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 31 (1984), 433–486.
18.
go back to reference Harada M., and G. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory. Transactions of the AMS, 359 (2007), 6001–6025. Harada M., and G. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory. Transactions of the AMS, 359 (2007), 6001–6025.
19.
go back to reference Hattori, A. and T. Yoshida, Lifting compact group actions into fiber bundles, Japan. J. Math. 2 (1976), 13–25. Hattori, A. and T. Yoshida, Lifting compact group actions into fiber bundles, Japan. J. Math. 2 (1976), 13–25.
20.
go back to reference Hirzebruch, F., T. Berger and R. Jung, Manifolds and Modular Forms, Aspects of Mathematics, E20, Vieweg, (1992). Hirzebruch, F., T. Berger and R. Jung, Manifolds and Modular Forms, Aspects of Mathematics, E20, Vieweg, (1992).
21.
go back to reference James D.M., Smooth \(S^1\)-actions on homotopy \({\mathbb{C}} P^4\)’s, Michigan Math. J. 32 (1985), 259–266. James D.M., Smooth \(S^1\)-actions on homotopy \({\mathbb{C}} P^4\)’s, Michigan Math. J. 32 (1985), 259–266.
22.
go back to reference Karshon, Y., Periodic Hamiltonian flows on four dimensional manifolds, Memoirs Amer. Math. Soc. 672 (1999). Karshon, Y., Periodic Hamiltonian flows on four dimensional manifolds, Memoirs Amer. Math. Soc. 672 (1999).
23.
go back to reference Kirwan, F., Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984. Kirwan, F., Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984.
24.
go back to reference Kosniowski C., Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc. 2 (1970), 43–48. Kosniowski C., Applications of the holomorphic Lefschetz formula, Bull. London Math. Soc. 2 (1970), 43–48.
25.
go back to reference Li, P., Chern numbers and the indices of some elliptic differential operators, Pacific J. Math. 251 (2011), 173–182. Li, P., Chern numbers and the indices of some elliptic differential operators, Pacific J. Math. 251 (2011), 173–182.
26.
go back to reference Li, P., The rigidity of Dolbeault-type operators and symplectic circle actions, Proc. Amer. Math. Soc. 140 (2012), 1987–1995. Li, P., The rigidity of Dolbeault-type operators and symplectic circle actions, Proc. Amer. Math. Soc. 140 (2012), 1987–1995.
27.
go back to reference Li, P. and K. Liu, On an algebraic formula and applications to group action on manifolds, Asian J. Math. 17 (2013), 383–390. Li, P. and K. Liu, On an algebraic formula and applications to group action on manifolds, Asian J. Math. 17 (2013), 383–390.
28.
go back to reference Li, P. and K. Liu, Circle action and some vanishing results on manifolds, Int. J. of Math., 22 (2011), 1603–1610. Li, P. and K. Liu, Circle action and some vanishing results on manifolds, Int. J. of Math., 22 (2011), 1603–1610.
29.
go back to reference Libgober, A. and J. Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Diff. Geom. 32 (1990), 139–154. Libgober, A. and J. Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Diff. Geom. 32 (1990), 139–154.
30.
go back to reference Lusztig G., Remarks on the holomorphic Lefschetz numbers, Analyse globale, Presses Univ. Montreal, Montreal, Que. (1971), 193–204. Lusztig G., Remarks on the holomorphic Lefschetz numbers, Analyse globale, Presses Univ. Montreal, Montreal, Que. (1971), 193–204.
31.
go back to reference McDuff D., Some 6-dimensional Hamiltonian S1-manifolds, J. Topology 2 (2009), 589–623. McDuff D., Some 6-dimensional Hamiltonian S1-manifolds, J. Topology 2 (2009), 589–623.
32.
go back to reference Mundet i Riera, I., Lifts of smooth group actions to line bundles, Bulletin of the London Mathematical Society 33 (2001), 351–361. Mundet i Riera, I., Lifts of smooth group actions to line bundles, Bulletin of the London Mathematical Society 33 (2001), 351–361.
33.
go back to reference McDuff D. and S. Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. 72826 (2006), 1–77. McDuff D. and S. Tolman, Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap. 72826 (2006), 1–77.
34.
go back to reference Morton D., GKM manifolds with low Betti numbers. Ph.D. thesis, University of Illinois at Urbana Champaign, 2011. Morton D., GKM manifolds with low Betti numbers. Ph.D. thesis, University of Illinois at Urbana Champaign, 2011.
35.
go back to reference Petrie, T., Smooth \(S^1\)-actions on homotopy complex projective spaces and related topics, Bull. Math. Soc. 78 (1972), 105–153. Petrie, T., Smooth \(S^1\)-actions on homotopy complex projective spaces and related topics, Bull. Math. Soc. 78 (1972), 105–153.
36.
go back to reference Petrie, T., Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139–146. Petrie, T., Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139–146.
37.
go back to reference Pelayo, A. and S. Tolman, Fixed points of symplectic periodic flows, Erg. Theory and Dyn. Syst. 31 (2011). Pelayo, A. and S. Tolman, Fixed points of symplectic periodic flows, Erg. Theory and Dyn. Syst. 31 (2011).
38.
go back to reference Prasad G. and S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007), 321–370. Prasad G. and S.-K. Yeung, Fake projective planes, Invent. Math. 168 (2007), 321–370.
39.
go back to reference Salamon, S. M., Cohomology of Kähler manifolds with \(c1=0\), Manifolds and geometry (Pisa, 1993), 294–310, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, (1996). Salamon, S. M., Cohomology of Kähler manifolds with \(c1=0\), Manifolds and geometry (Pisa, 1993), 294–310, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, (1996).
40.
go back to reference Sabatini, S. and S. Tolman, New Techniques for obtaining Schubert-type formulas for Hamiltonian manifolds, J. Symplectic Geom. 11 (2013), 179–230. Sabatini, S. and S. Tolman, New Techniques for obtaining Schubert-type formulas for Hamiltonian manifolds, J. Symplectic Geom. 11 (2013), 179–230.
41.
go back to reference Tolman, S., On a symplectic generalization of Petrie’s conjecture, Trans. Amer. Math. Soc. 362 (2010), 3963–3996. Tolman, S., On a symplectic generalization of Petrie’s conjecture, Trans. Amer. Math. Soc. 362 (2010), 3963–3996.
42.
go back to reference Tolman, S., Examples of non-Kähler Hamiltonian torus actions, Invent. Math. 131 (1998), 299–310. Tolman, S., Examples of non-Kähler Hamiltonian torus actions, Invent. Math. 131 (1998), 299–310.
43.
go back to reference Wilson P.M.H., On projective manifolds with the same rational cohomology as \({\mathbb{C}} P^4\), Rend. Sem. Mat. Univers. Politecn. Torino, (1986), 15–23. Wilson P.M.H., On projective manifolds with the same rational cohomology as \({\mathbb{C}} P^4\), Rend. Sem. Mat. Univers. Politecn. Torino, (1986), 15–23.
44.
go back to reference Yeung S.-K., Uniformization of fake projective four spaces. Acta Math. Vietnamica 35 (2010), 199–205. Yeung S.-K., Uniformization of fake projective four spaces. Acta Math. Vietnamica 35 (2010), 199–205.
Metadata
Title
New Tools for Classifying Hamiltonian Circle Actions with Isolated Fixed Points
Authors
Leonor Godinho
Silvia Sabatini
Publication date
01-08-2014
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 4/2014
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9204-1

Other articles of this Issue 4/2014

Foundations of Computational Mathematics 4/2014 Go to the issue

Premium Partner