Skip to main content
Top
Published in: Microsystem Technologies 10/2019

06-12-2018 | Technical Paper

Nitrogen passivation formation on Cu surface by Ar–N2 plasma for Cu-to-Cu wafer stacking application

Authors: Haesung Park, Sarah Eunkyung Kim

Published in: Microsystem Technologies | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wafer stacking technology provides reduced interconnect delay, improved bandwidth, reduced form factor, and decreased cost. Solder-based metallic die bonding is presently utilized in high-volume manufacturing, but Cu-based metallic wafer bonding is quickly becoming a key bonding technique for next generation 3D IC and heterogeneous stacking applications. In this study, Ar–N2 plasma treatment on Cu surface was investigated to passivate Cu surface with nitrogen and to enhance the bonding quality of Cu-to-Cu wafer bonding. The Ar–N2 plasma treatment was performed by conventional DC sputtering under 5 mTorr working pressure with different Ar–N2 partial pressures. Then, the effect of Ar–N2 plasma treatment on Cu surface was evaluated structurally and electrically. It was observed that the Ar–N2 plasma treatment with high nitrogen partial pressure over a sufficient plasma treatment time provided activated Cu surface, reduction of copper oxide and chemisorbed nitrogen, and copper nitride passivation. The Ar–N2 plasma treatment of Cu surface was found to be a potential pretreatment method for Cu-to-Cu bonding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aikera A, Aciejewski M (1984) Formation and thermal stability of copper and nickel nitrides. J Chem Soc Faraday Trans 80:2331–2341CrossRef Aikera A, Aciejewski M (1984) Formation and thermal stability of copper and nickel nitrides. J Chem Soc Faraday Trans 80:2331–2341CrossRef
go back to reference Baklanov MR, Shamiryan DG, Tokei Z (2001) Characterization of Cu surface cleaning by hydrogen plasma. J Vac Sci Technol B 19:1201–1211CrossRef Baklanov MR, Shamiryan DG, Tokei Z (2001) Characterization of Cu surface cleaning by hydrogen plasma. J Vac Sci Technol B 19:1201–1211CrossRef
go back to reference Chiang C, Chen M, Li L, Wu Z, Jang S, Liang M (2004) Effects of O2- and N2-plasma treatments on copper surface. Jpn J Appl Phys 43(11A):7415–7418CrossRef Chiang C, Chen M, Li L, Wu Z, Jang S, Liang M (2004) Effects of O2- and N2-plasma treatments on copper surface. Jpn J Appl Phys 43(11A):7415–7418CrossRef
go back to reference Das S, Chandrakasam AP, Reif R (2004) Calibraion of rent’s rule models for three-dimensional integrated circuits. IEEE VLSL Syst 12(4):359CrossRef Das S, Chandrakasam AP, Reif R (2004) Calibraion of rent’s rule models for three-dimensional integrated circuits. IEEE VLSL Syst 12(4):359CrossRef
go back to reference Kang S, Lee J, Kim E, Lim N, Kim S, Kim S, Kim SE (2012) Fabrication and challenges of Cu-to-Cu wafer bonding. J Microelectron Packag Soc 19(2):29–33CrossRef Kang S, Lee J, Kim E, Lim N, Kim S, Kim S, Kim SE (2012) Fabrication and challenges of Cu-to-Cu wafer bonding. J Microelectron Packag Soc 19(2):29–33CrossRef
go back to reference Kim SE, Kim S (2015) Wafer level Cu–Cu direct bonding for 3D integration. Microelectron Eng 137:158–163CrossRef Kim SE, Kim S (2015) Wafer level Cu–Cu direct bonding for 3D integration. Microelectron Eng 137:158–163CrossRef
go back to reference Kim E, Sung J (2008) Yield challenges in wafer stacking technology. Microelectron Reliab 48:1102–1105CrossRef Kim E, Sung J (2008) Yield challenges in wafer stacking technology. Microelectron Reliab 48:1102–1105CrossRef
go back to reference Kim TH, Howlader MMR, Itoh T, Suga T (2003a) Room temperature Cu–Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21:449–453CrossRef Kim TH, Howlader MMR, Itoh T, Suga T (2003a) Room temperature Cu–Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21:449–453CrossRef
go back to reference Kim MC, Yang SH, Boo JH, Han JG (2003b) Surface treatment of metals using anatmospheric pressure plasma jet and their surface characteristics. Surf Coat Technol 174–175:839CrossRef Kim MC, Yang SH, Boo JH, Han JG (2003b) Surface treatment of metals using anatmospheric pressure plasma jet and their surface characteristics. Surf Coat Technol 174–175:839CrossRef
go back to reference Li JJ, Cheng CL, Shi TL, Fan JH, Yua X, Cheng SY, Liao GL, Tang ZR (2016) Surface effect induced Cu–Cu bonding by Cu nanosolder paste. Mater Lett 184:193–196CrossRef Li JJ, Cheng CL, Shi TL, Fan JH, Yua X, Cheng SY, Liao GL, Tang ZR (2016) Surface effect induced Cu–Cu bonding by Cu nanosolder paste. Mater Lett 184:193–196CrossRef
go back to reference Li J, Yu X, Shi T, Cheng C, Fan J, Cheng S, Li T, Liao G, Tang Z (2017) Depressing of Cu–Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles. J Alloys Compd 709:700–707CrossRef Li J, Yu X, Shi T, Cheng C, Fan J, Cheng S, Li T, Liao G, Tang Z (2017) Depressing of Cu–Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles. J Alloys Compd 709:700–707CrossRef
go back to reference RS List, C Webb, SE Kim (2002) 3D wafer stacking technology. AMC 18:29 RS List, C Webb, SE Kim (2002) 3D wafer stacking technology. AMC 18:29
go back to reference Liu X, Nishikawa H (2016) Low-pressure Cu–Cu bonding using in situ surface-modified microscale Cu particles for power device packaging. Scripta Mater 120:80–84CrossRef Liu X, Nishikawa H (2016) Low-pressure Cu–Cu bonding using in situ surface-modified microscale Cu particles for power device packaging. Scripta Mater 120:80–84CrossRef
go back to reference Liu Z, Cai J, Wang Q, Liu L, Zou G (2018) Modified pulse laser deposition of Ag nanostructure as intermediate for low temperature Cu–Cu bonding. Appl Surf Sci 445:16–23CrossRef Liu Z, Cai J, Wang Q, Liu L, Zou G (2018) Modified pulse laser deposition of Ag nanostructure as intermediate for low temperature Cu–Cu bonding. Appl Surf Sci 445:16–23CrossRef
go back to reference Nosakaa T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y (2001) Thermal decomposition of copper nitride thin films and dots formation by electron beam writing. Appl Surf Sci 169–170:358–361CrossRef Nosakaa T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y (2001) Thermal decomposition of copper nitride thin films and dots formation by electron beam writing. Appl Surf Sci 169–170:358–361CrossRef
go back to reference Panigrahi AK, Ghosh T, Vanjari SRK, Singh SG (2017) Demonstration of sub 150 °C Cu–Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of manganin alloy as an effective surface passivation layer. Mater Lett 194:86–89CrossRef Panigrahi AK, Ghosh T, Vanjari SRK, Singh SG (2017) Demonstration of sub 150 °C Cu–Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of manganin alloy as an effective surface passivation layer. Mater Lett 194:86–89CrossRef
go back to reference Park M, Baek S, Kim S, Kim SE (2015) Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics. Appl Surf Sci 324:168–173CrossRef Park M, Baek S, Kim S, Kim SE (2015) Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics. Appl Surf Sci 324:168–173CrossRef
go back to reference Peng L, Li HY, Lim DF, Lo GQ, Kwong DL, Tan CS (2010) Fabrication and characterization of bump-less Cu–Cu bonding by wafer-on-wafer stacking for 3D IC, IEEE 12th EPTC: 787 Peng L, Li HY, Lim DF, Lo GQ, Kwong DL, Tan CS (2010) Fabrication and characterization of bump-less Cu–Cu bonding by wafer-on-wafer stacking for 3D IC, IEEE 12th EPTC: 787
go back to reference Stepanova M, Dew SK, Soshnikov IP (2005) Copper nanopattern on SiO2 from sputter etching a Cu/SiO2 interface. Appl Phys Lett 86:073112CrossRef Stepanova M, Dew SK, Soshnikov IP (2005) Copper nanopattern on SiO2 from sputter etching a Cu/SiO2 interface. Appl Phys Lett 86:073112CrossRef
go back to reference Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95(19):2108CrossRef Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95(19):2108CrossRef
go back to reference Tang Y, Chang Y, Chen K (2012) Wafer-level Cu–Cu bonding technology. Microelectron Reliab 52:312–320CrossRef Tang Y, Chang Y, Chen K (2012) Wafer-level Cu–Cu bonding technology. Microelectron Reliab 52:312–320CrossRef
go back to reference Tang GS, Liu HY, Zeng F, Pan F (2013) Nanostructure formation of Cu/Si(100) thin film induced by ion beam bombardment. Vacuum 89:157CrossRef Tang GS, Liu HY, Zeng F, Pan F (2013) Nanostructure formation of Cu/Si(100) thin film induced by ion beam bombardment. Vacuum 89:157CrossRef
go back to reference Thompson CV, Carel R (1995) Texture development in polycrystalline thin films. Mater Sci Eng B 32:211CrossRef Thompson CV, Carel R (1995) Texture development in polycrystalline thin films. Mater Sci Eng B 32:211CrossRef
go back to reference Wang DY, Nakamine N, Hayashi Y (1998) Properties of various sputter-deposited Cu–N thin films. J Vac Sci Technol A 16(4):2084–2092CrossRef Wang DY, Nakamine N, Hayashi Y (1998) Properties of various sputter-deposited Cu–N thin films. J Vac Sci Technol A 16(4):2084–2092CrossRef
go back to reference Wang J, Wang Q, Liu Z, Wu Z, Cai J, Wanga D (2016) Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu–Sn bonding in 3D interconnection. Appl Surf Sci 384:200–206CrossRef Wang J, Wang Q, Liu Z, Wu Z, Cai J, Wanga D (2016) Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu–Sn bonding in 3D interconnection. Appl Surf Sci 384:200–206CrossRef
go back to reference Wu Z, Cai J, Wang Q, Wang J (2017) Low temperature Cu–Cu bonding using copper nanoparticles fabricated by high pressure PVD. AIP Adv 7:035306CrossRef Wu Z, Cai J, Wang Q, Wang J (2017) Low temperature Cu–Cu bonding using copper nanoparticles fabricated by high pressure PVD. AIP Adv 7:035306CrossRef
Metadata
Title
Nitrogen passivation formation on Cu surface by Ar–N2 plasma for Cu-to-Cu wafer stacking application
Authors
Haesung Park
Sarah Eunkyung Kim
Publication date
06-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 10/2019
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4254-y

Other articles of this Issue 10/2019

Microsystem Technologies 10/2019 Go to the issue