Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2020

21-02-2020 | Research Article-Mechanical Engineering

Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows Over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation

Authors: M. K. Nayak, A. Wakif, I. L. Animasaun, M. Saidi Hassani Alaoui

Published in: Arabian Journal for Science and Engineering | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The significance of the local skin friction as well as the heat transfer rate on the motion of water \( \left( {{\text{H}}_{2} {\text{O}}} \right) \) and ethylene glycol \( \left( {{\text{C}}_{2} {\text{H}}_{6} {\text{O}}_{2} } \right) \) conveying metallic and metallic oxide nanoparticles (e.g., Al, Cu, Zn, Al203, CuO and ZnO) along a vertical thin needle is needed to improve the performance of chemical reactors, heat exchangers, pharmaceutical equipment and hybrid-powered engines. This led to the investigation of mixed convection flow and heat transfer of some nanofluids, in which the thermal conductivity and viscosity vary nonlinearly with the volume fraction. For simplifying the present investigation, appropriate variables were introduced successfully in the mathematical formulation to convert the governing nonlinear partial differential equations to coupled ordinary differential equations (ODEs). Moreover, the resulting ODEs were solved numerically via a robust differential quadrature algorithm. Furthermore, a comparative study with the existing literature is found to be in an excellent agreement. The enhancement of heat transfer in nanofluids is ascertained by increasing the convection ratio. Generally, the maximum improvement in the local skin friction was perceived for the flows of zinc–water-based nanofluids (\( {\text{Zn}} \)\( {\text{H}}_{2} {\text{O}} \)) with the upsurge in the volume fraction of the nanoparticles \( {\text{Zn}} \). On the contrary, the highest enhancement in the heat transfer rate was revealed for the flows of copper–ethylene glycol-based nanofluids (\( {\text{Cu}} \)\( {\text{C}}_{2} {\text{H}}_{6} {\text{O}}_{2} \)) with the increase in the weight percent of the \( {\text{Cu}} \) nanomaterial loading.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995) Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995)
11.
go back to reference Animasaun, I.L.; Mahanthesh, B.; Jagun, A.O.; Bankole, T.D.; Sivaraj, R.; Shah, N.A.; Saleem, S.: Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J. Heat Transf. 141, 022402 (2018). https://doi.org/10.1115/1.4041971 CrossRef Animasaun, I.L.; Mahanthesh, B.; Jagun, A.O.; Bankole, T.D.; Sivaraj, R.; Shah, N.A.; Saleem, S.: Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J. Heat Transf. 141, 022402 (2018). https://​doi.​org/​10.​1115/​1.​4041971 CrossRef
12.
go back to reference Wakif, A.; Boulahia, Z.; Amine, A.; Animasaun, I.L.; Afridi, M.I.; Qasim, M.; Sehaqui, R.: Magneto-convection of alumina–water nanofluid within thin horizontal layers using the revised generalized Buongiorno’s model. Front. Heat Mass Transf. 12, 1–15 (2019). https://doi.org/10.5098/hmt.12.3 CrossRef Wakif, A.; Boulahia, Z.; Amine, A.; Animasaun, I.L.; Afridi, M.I.; Qasim, M.; Sehaqui, R.: Magneto-convection of alumina–water nanofluid within thin horizontal layers using the revised generalized Buongiorno’s model. Front. Heat Mass Transf. 12, 1–15 (2019). https://​doi.​org/​10.​5098/​hmt.​12.​3 CrossRef
15.
go back to reference Sivaraj, R.; Animasaun, I.L.; Olabiyi, A.S.; Saleem, S.; Sandeep, N.: Gyrotactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO–water nanofluid over an upper horizontal surface of paraboloid of revolution. Multidiscip. Model. Mater. Struct. 14, 695–721 (2018). https://doi.org/10.1108/MMMS-10-2017-0116 CrossRef Sivaraj, R.; Animasaun, I.L.; Olabiyi, A.S.; Saleem, S.; Sandeep, N.: Gyrotactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO–water nanofluid over an upper horizontal surface of paraboloid of revolution. Multidiscip. Model. Mater. Struct. 14, 695–721 (2018). https://​doi.​org/​10.​1108/​MMMS-10-2017-0116 CrossRef
26.
go back to reference Nayak, M.K.; Shaw, S.; Makinde, O.D.; Chamkha, A.J.: Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. J. Nanofluids 8, 51–62 (2019). https://doi.org/10.1166/jon.2019.1576 CrossRef Nayak, M.K.; Shaw, S.; Makinde, O.D.; Chamkha, A.J.: Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. J. Nanofluids 8, 51–62 (2019). https://​doi.​org/​10.​1166/​jon.​2019.​1576 CrossRef
40.
go back to reference Garnett, J.C.M.: Colours in metal glasses, in metallic films and in metallic solutions. Proc. R. Soc. Lond. A 76, 370–373 (1905)CrossRef Garnett, J.C.M.: Colours in metal glasses, in metallic films and in metallic solutions. Proc. R. Soc. Lond. A 76, 370–373 (1905)CrossRef
41.
go back to reference Wakif, A.; Boulahia, Z.; Mishra, S.R.; Rashidi, M.M.; Sehaqui, R.: Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur. Phys. J. Plus. 133(181), 1–16 (2018). https://doi.org/10.1140/epjp/i2018-12037-7 CrossRef Wakif, A.; Boulahia, Z.; Mishra, S.R.; Rashidi, M.M.; Sehaqui, R.: Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur. Phys. J. Plus. 133(181), 1–16 (2018). https://​doi.​org/​10.​1140/​epjp/​i2018-12037-7 CrossRef
42.
go back to reference Bergman, T.L.; Incropera, F.P.; Lavine, A.S.; Dewitt, D.P.: Introduction to Heat Transfer. Wiley, Hoboken (2011) Bergman, T.L.; Incropera, F.P.; Lavine, A.S.; Dewitt, D.P.: Introduction to Heat Transfer. Wiley, Hoboken (2011)
46.
go back to reference Afridi, M.I.; Wakif, A.; Qasim, M.; Hussanan, A.: Irreversibility analysis of dissipative fluid flow over a curved surface stimulated by variable thermal conductivity and uniform magnetic field: utilization of generalized differential quadrature method. Entropy 20, 1–15 (2018). https://doi.org/10.3390/e20120943 CrossRef Afridi, M.I.; Wakif, A.; Qasim, M.; Hussanan, A.: Irreversibility analysis of dissipative fluid flow over a curved surface stimulated by variable thermal conductivity and uniform magnetic field: utilization of generalized differential quadrature method. Entropy 20, 1–15 (2018). https://​doi.​org/​10.​3390/​e20120943 CrossRef
47.
go back to reference Afridi, I.M.; Qasim, M.; Wakif, A.; Hussanan, A.: Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: utilization of the Chebyshev–Gauss–Lobatto spectral method. Nanomaterials 9, 1–21 (2019). https://doi.org/10.3390/nano9020195 CrossRef Afridi, I.M.; Qasim, M.; Wakif, A.; Hussanan, A.: Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: utilization of the Chebyshev–Gauss–Lobatto spectral method. Nanomaterials 9, 1–21 (2019). https://​doi.​org/​10.​3390/​nano9020195 CrossRef
50.
go back to reference Wakif, A.; Qasim, M.; Afridi, M.I.; Saleem, S.; Al-Qarni, M.M.: Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes’ second problem: utilization of the gear-generalized differential quadrature method. J. Non Equilib. Thermodyn. (2019). https://doi.org/10.1515/jnet-2018-0099 CrossRef Wakif, A.; Qasim, M.; Afridi, M.I.; Saleem, S.; Al-Qarni, M.M.: Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes’ second problem: utilization of the gear-generalized differential quadrature method. J. Non Equilib. Thermodyn. (2019). https://​doi.​org/​10.​1515/​jnet-2018-0099 CrossRef
51.
go back to reference Qasim, M.; Afridi, M.I.; Wakif, A.; Thoi, T.N.; Hussanan, A.: Second law analysis of unsteady MHD viscous flow over a horizontal stretching sheet heated non-uniformly in the presence of ohmic heating: utilization of gear-generalized differential quadrature method. Entropy 21, 1–25 (2019). https://doi.org/10.3390/e21030240 MathSciNetCrossRef Qasim, M.; Afridi, M.I.; Wakif, A.; Thoi, T.N.; Hussanan, A.: Second law analysis of unsteady MHD viscous flow over a horizontal stretching sheet heated non-uniformly in the presence of ohmic heating: utilization of gear-generalized differential quadrature method. Entropy 21, 1–25 (2019). https://​doi.​org/​10.​3390/​e21030240 MathSciNetCrossRef
52.
go back to reference Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2012) Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2012)
Metadata
Title
Numerical Differential Quadrature Examination of Steady Mixed Convection Nanofluid Flows Over an Isothermal Thin Needle Conveying Metallic and Metallic Oxide Nanomaterials: A Comparative Investigation
Authors
M. K. Nayak
A. Wakif
I. L. Animasaun
M. Saidi Hassani Alaoui
Publication date
21-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04420-x

Other articles of this Issue 7/2020

Arabian Journal for Science and Engineering 7/2020 Go to the issue

Premium Partners