Skip to main content
Top
Published in: Thermal Engineering 12/2023

01-12-2023 | HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS

Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer

Authors: V. G. Lushchik, M. S. Makarova, S. S. Popovich

Published in: Thermal Engineering | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A technique for modeling turbulent flow in a channel with impermeable and permeable walls in the presence of heat supply to the wall is proposed. To close the equations of the boundary layer, a three-parameter differential model of shear turbulence is used, which is supplemented by a transfer equation for a turbulent heat flux. Calculations are carried out for a developed turbulent flow in a round pipe with impermeable and permeable walls for air and binary gas mixtures with a low molecular Prandtl number with parameters corresponding to those in earlier experiments. The results of studies on the effect of the Prandtl number on heat transfer in a pipe with impermeable walls for a coolant with constant physical properties are consistent with the experimental data and empirical dependences of W.M. Kays and B.S. Petukhov for the Nusselt number in the range of Prandtl numbers of 0.2–0.7. It is shown that a positive pressure gradient arising in a pipe under strong gas suction leads to a violation of the similarity of the velocity and temperature profiles and, as a consequence, to a violation of the Reynolds analogy. The use of the transport equation for a turbulent heat flux makes it possible to take into account the complex dependence of the turbulent Prandtl number on the molecular Prandtl number in the viscous sublayer and in the logarithmic boundary layer. The influence of the variability of thermophysical properties and the turbulent Prandtl number on the characteristics of heat transfer in a pipe is estimated. Thus, the difference between the Nu number determined under the assumption of a constant turbulent Prandtl number and the results obtained in calculations using the equation for turbulent heat flux increases with a decrease in the molecular Prandtl number and an increase in the intensity of gas suction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference W. M. Kays, Convective Heat and Mass Transfer, 4th ed. (McGraw-Hill, New York, 2004). W. M. Kays, Convective Heat and Mass Transfer, 4th ed. (McGraw-Hill, New York, 2004).
19.
go back to reference V. M. Eroshenko and L. I. Zaichik, Hydrodynamics and Heat and Mass Transfer on Permeable Surfaces (Nauka, Moscow, 1984) [in Russian]. V. M. Eroshenko and L. I. Zaichik, Hydrodynamics and Heat and Mass Transfer on Permeable Surfaces (Nauka, Moscow, 1984) [in Russian].
20.
go back to reference A. I. Leont’ev, V. G. Lushchik, and M. S. Makarova, “Numerical investigation of tube flow with suction through permeable walls,” Fluid Dyn. 49, 362–368 (2014).CrossRef A. I. Leont’ev, V. G. Lushchik, and M. S. Makarova, “Numerical investigation of tube flow with suction through permeable walls,” Fluid Dyn. 49, 362–368 (2014).CrossRef
21.
go back to reference V. G. Lushchik, M. S. Makarova, and A. I. Reshmin, “Laminarization of flow with heat transfer in a plane channel with a confuser,” Fluid Dyn. 54, 67–76 (2019).MathSciNetCrossRef V. G. Lushchik, M. S. Makarova, and A. I. Reshmin, “Laminarization of flow with heat transfer in a plane channel with a confuser,” Fluid Dyn. 54, 67–76 (2019).MathSciNetCrossRef
23.
go back to reference V. G. Lushchik, M. S. Makarova, and A. I. Reshmin, “Numerical simulation of turbulent flow control at pipe inlet to advance flow relaminarization,” Fluid Dyn. 58, 57–71 (2023).MathSciNetCrossRef V. G. Lushchik, M. S. Makarova, and A. I. Reshmin, “Numerical simulation of turbulent flow control at pipe inlet to advance flow relaminarization,” Fluid Dyn. 58, 57–71 (2023).MathSciNetCrossRef
24.
go back to reference A. I. Reshmin, V. V. Trifonov, and S. Kh. Teplovodskii, “Short round diffuser with a high area ratio and a permeable partition,” Fluid Dyn. 47, 583–589 (2012).CrossRef A. I. Reshmin, V. V. Trifonov, and S. Kh. Teplovodskii, “Short round diffuser with a high area ratio and a permeable partition,” Fluid Dyn. 47, 583–589 (2012).CrossRef
25.
go back to reference A. I. Leont’ev, V. G. Lushchik, and M. S. Makarova, “Heat and mass transfer in a tube with permeable walls: Influence of suction and the Prandtl number,” in Proc. 8th Int. Symp. on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Sept. 15–18, 2015 (Begell House, New York, 2015), pp. 145–148. A. I. Leont’ev, V. G. Lushchik, and M. S. Makarova, “Heat and mass transfer in a tube with permeable walls: Influence of suction and the Prandtl number,” in Proc. 8th Int. Symp. on Turbulence, Heat and Mass Transfer, Sarajevo, Bosnia and Herzegovina, Sept. 15–18, 2015 (Begell House, New York, 2015), pp. 145–148.
27.
go back to reference T. Cebeci and J. Cousteix, Modeling and Computation of Boundary-Layer Flows (Horizons, Long Beach, Calif., 2005). T. Cebeci and J. Cousteix, Modeling and Computation of Boundary-Layer Flows (Horizons, Long Beach, Calif., 2005).
28.
go back to reference V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Three-parameter model of shear turbulence,” Fluid Dyn. 13, 350–360 (1978).CrossRef V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Three-parameter model of shear turbulence,” Fluid Dyn. 13, 350–360 (1978).CrossRef
29.
go back to reference V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Three-parameter model of turbulence: Heat transfer calculations,” Fluid Dyn. 21, 200–211 (1986).CrossRef V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Three-parameter model of turbulence: Heat transfer calculations,” Fluid Dyn. 21, 200–211 (1986).CrossRef
32.
go back to reference V. G. Lushchik and M. S. Makarova, “Turbulent Prandtl number in the boundary layer on a plate: Effect of the molecular Prandtl number, injection (suction), and longitudinal pressure gradient,” Thermophys. Aeromech. 25, 169–182 (2018).CrossRef V. G. Lushchik and M. S. Makarova, “Turbulent Prandtl number in the boundary layer on a plate: Effect of the molecular Prandtl number, injection (suction), and longitudinal pressure gradient,” Thermophys. Aeromech. 25, 169–182 (2018).CrossRef
33.
go back to reference V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Transfer equation for turbulent heat flux. Calculation of heat exchange in a pipe,” Fluid Dyn. 23, 835–842 (1988).CrossRef V. G. Lushchik, A. A. Pavel’ev, and A. E. Yakubenko, “Transfer equation for turbulent heat flux. Calculation of heat exchange in a pipe,” Fluid Dyn. 23, 835–842 (1988).CrossRef
35.
go back to reference V. G. Lushchik and A. E. Yakubenko, “Comparative analysis of turbulence models for calculating a near-wall boundary layer,” Fluid Dyn. 33, 36–47 (1998).CrossRef V. G. Lushchik and A. E. Yakubenko, “Comparative analysis of turbulence models for calculating a near-wall boundary layer,” Fluid Dyn. 33, 36–47 (1998).CrossRef
37.
go back to reference V. G. Lushchik and M. S. Makarova, “Numerical investigation of the effect of the Prandtl number on the temperature recovery and the Reynolds analogy factors in the boundary layer on a plate,” High Temp. 54, 377–382 (2016).CrossRef V. G. Lushchik and M. S. Makarova, “Numerical investigation of the effect of the Prandtl number on the temperature recovery and the Reynolds analogy factors in the boundary layer on a plate,” High Temp. 54, 377–382 (2016).CrossRef
Metadata
Title
Numerical Investigation of the Influence of the Coolant’s Prandtl Molecular Numbers and the Permeability of the Pipe Wall on Turbulent Heat Transfer
Authors
V. G. Lushchik
M. S. Makarova
S. S. Popovich
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 12/2023
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523120091

Other articles of this Issue 12/2023

Thermal Engineering 12/2023 Go to the issue

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE PLANTS AND THEIR AUXILIARY EQUIPMENT

Selecting the Startup Option for the Surgut GRES-2 800-MW Power Unit in the Absence of Its Own Steam Source

Premium Partner