Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2013

01-03-2013 | Research Paper

On compliance and buckling objective functions in topology optimization of snap-through problems

Authors: Esben Lindgaard, Jonas Dahl

Published in: Structural and Multidisciplinary Optimization | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with topology optimization of static geometrically nonlinear structures experiencing snap-through behaviour. Different compliance and buckling criterion functions are studied and applied for topology optimization of a point loaded curved beam problem with the aim of maximizing the snap-through buckling load. The response of the optimized structures obtained using the considered objective functions are evaluated and compared. Due to the intrinsic nonlinear nature of the problem, the load level at which the objective function is evaluated has a tremendous effect on the resulting optimized design. A well-known issue in buckling topology optimization is artificial buckling modes in low density regions. The typical remedy applied for linear buckling does not have a natural extension to nonlinear problems, and we propose an alternative approach. Some possible negative implications of using symmetry to reduce the model size are highlighted and it is demonstrated how an initial symmetric buckling response may change to an asymmetric buckling response during the optimization process. This problem may partly be avoided by not exploiting symmetry, however special requirements are needed of the analysis method and optimization formulation. We apply a nonlinear path tracing algorithm capable of detecting different types of stability points and an optimization formulation that handles possible mode switching. This is an extension into the topology optimization realm of a method developed, and used for, fiber angle optimization in laminated composite structures. We finally discuss and pinpoint some of the issues related to buckling topology optimization that remains unsolved and demands further research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202CrossRef
go back to reference Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224CrossRef
go back to reference Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRef
go back to reference Bendsøe MP, Sigmund O (2003) Topology optimization – theory, methods and applications, 2nd edn. Springer, Berlin Heidelberg, New York, ISBN: 3-540-42992-1 Bendsøe MP, Sigmund O (2003) Topology optimization – theory, methods and applications, 2nd edn. Springer, Berlin Heidelberg, New York, ISBN: 3-540-42992-1
go back to reference Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544CrossRef Bendsøe MP, Olhoff N, Taylor JE (1983) A variational formulation for multicriteria structural optimization. J Struct Mech 11:523–544CrossRef
go back to reference Borri C, Hufendiek HW (1985) Geometrically nonlinear behaviour of space beam structures. J Struct Mech 13:1–26CrossRef Borri C, Hufendiek HW (1985) Geometrically nonlinear behaviour of space beam structures. J Struct Mech 13:1–26CrossRef
go back to reference Brendel B, Ramm E (1980) Linear and nonlinear stability analysis of cylindrical shells. Comput Struct 12:549–558MATHCrossRef Brendel B, Ramm E (1980) Linear and nonlinear stability analysis of cylindrical shells. Comput Struct 12:549–558MATHCrossRef
go back to reference Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193:3973–4000MathSciNetMATHCrossRef Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193:3973–4000MathSciNetMATHCrossRef
go back to reference Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55:1215–1237MATHCrossRef Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55:1215–1237MATHCrossRef
go back to reference Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104CrossRef Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104CrossRef
go back to reference Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience Publishers, New York Courant R, Hilbert D (1953) Methods of mathematical physics, vol 1. Interscience Publishers, New York
go back to reference Crisfield MA (1981) A fast incremental/iterative solution procedure that handles “snap-through”. Comput Struct 13:55–62MATHCrossRef Crisfield MA (1981) A fast incremental/iterative solution procedure that handles “snap-through”. Comput Struct 13:55–62MATHCrossRef
go back to reference Hinton E (ed) (1992) NAFEMS Introduction to Nonlinear Finite Element Analysis. Bell and Bain Ltd, Glasgow, ISBN 1-874376-00-X Hinton E (ed) (1992) NAFEMS Introduction to Nonlinear Finite Element Analysis. Bell and Bain Ltd, Glasgow, ISBN 1-874376-00-X
go back to reference Khot NS, Venkayya VB, Berke L (1976) Optimal structural design with stability constraints. Int J Numer Methods Eng 10:1097–1114MATHCrossRef Khot NS, Venkayya VB, Berke L (1976) Optimal structural design with stability constraints. Int J Numer Methods Eng 10:1097–1114MATHCrossRef
go back to reference Lee SJ, Hinton E (2000) Dangers inherited in shells optimized with linear assumptions. Comput Struct 78:473–486CrossRef Lee SJ, Hinton E (2000) Dangers inherited in shells optimized with linear assumptions. Comput Struct 78:473–486CrossRef
go back to reference Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124. doi:10.1002/we.132 CrossRef Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8:109–124. doi:10.​1002/​we.​132 CrossRef
go back to reference Manickarajaha D, Xiea YM, Steven GP (2000) Optimisation of columns and frames against buckling. Comput Struct 75:45–54CrossRef Manickarajaha D, Xiea YM, Steven GP (2000) Optimisation of columns and frames against buckling. Comput Struct 75:45–54CrossRef
go back to reference Min S, Kikuchi N (1997) Optimal reinforcement design of structures under the buckling load using the homogenization design method. Struct Eng Mech 5:565–576 Min S, Kikuchi N (1997) Optimal reinforcement design of structures under the buckling load using the homogenization design method. Struct Eng Mech 5:565–576
go back to reference Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10:71–78CrossRef Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10:71–78CrossRef
go back to reference Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Meth Eng 54:809–834MATHCrossRef Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Meth Eng 54:809–834MATHCrossRef
go back to reference Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17CrossRef Olhoff N (1989) Multicriterion structural optimization via bound formulation and mathematical programming. Struct Optim 1:11–17CrossRef
go back to reference Olhoff N, Rasmussen SH (1977) On single and bimodal optimum buckling loads of clamped columns. Int J Solids Struct 13:605–614MATHCrossRef Olhoff N, Rasmussen SH (1977) On single and bimodal optimum buckling loads of clamped columns. Int J Solids Struct 13:605–614MATHCrossRef
go back to reference Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252 Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252
go back to reference Sekimoto T, Noguchi H (2001) Homologous topology optimization in large displacement and buckling problems. JSME Int J 44:616–622CrossRef Sekimoto T, Noguchi H (2001) Homologous topology optimization in large displacement and buckling problems. JSME Int J 44:616–622CrossRef
go back to reference Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8:207–227CrossRef Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8:207–227CrossRef
go back to reference Taylor JE, Bendsøe MP (1984) An interpretation of min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20(4):301–314MATHCrossRef Taylor JE, Bendsøe MP (1984) An interpretation of min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20(4):301–314MATHCrossRef
go back to reference Wilson EL, Itoh T (1983) An eigensolution strategy for large systems. Comput Struct 16:259–265MATHCrossRef Wilson EL, Itoh T (1983) An eigensolution strategy for large systems. Comput Struct 16:259–265MATHCrossRef
go back to reference Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J R Aeronaut Soc 66:590–591 Wittrick WH (1962) Rates of change of eigenvalues, with reference to buckling and vibration problems. J R Aeronaut Soc 66:590–591
Metadata
Title
On compliance and buckling objective functions in topology optimization of snap-through problems
Authors
Esben Lindgaard
Jonas Dahl
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Structural and Multidisciplinary Optimization / Issue 3/2013
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-012-0832-2

Other articles of this Issue 3/2013

Structural and Multidisciplinary Optimization 3/2013 Go to the issue

Premium Partners