Skip to main content
Top
Published in: Journal of Materials Science 28/2021

05-07-2021 | Electronic materials

On the ferroelectric dc nonlinear dielectric permittivity and its relation with the macroscopic polarization

Authors: R. Placeres-Jiménez, J. A. Eiras

Published in: Journal of Materials Science | Issue 28/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The relation between the nonlinear dielectric permittivity \(\varepsilon '(E)\) and the macroscopic polarization P(E) is obtained for ferroelectrics considering a weak alternating electric field \(E_1\cos (\omega t)\) superimposed to a dc bias field \(E_0\). Two different empirical models are reviewed. The first model uses the hyperbolic tangent function to represent the hysteretic behavior of the macroscopic polarization. In the second model is assumed that the dielectric permittivity is proportional to the reciprocal of a quadratic function of the local field, i.e., \(\varepsilon ' \propto {\{\alpha +\beta {\left[ E+\kappa P(E)\right] }^2 \}}^{-1}\). A combination of both models is used to fit the experimental curve \(\varepsilon '(E)\) and to reproduce P(E). The parameters obtained from the fitting with this model can be used to get a better understanding of the correlation between the macroscopic response and the domain structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gevorgian S (2009) Ferroelectrics in Microwave Devices. Circuits and Systems, London, SpringerCrossRef Gevorgian S (2009) Ferroelectrics in Microwave Devices. Circuits and Systems, London, SpringerCrossRef
2.
go back to reference Menesklou W, Paul F, Zhou X, Elsenheimer H, Binder JR, Ivers-Tiffée E (2011) Nonlinear ceramics for tunable microwave devices part I: materials properties and processing. Microsyst Technol 17:203–211CrossRef Menesklou W, Paul F, Zhou X, Elsenheimer H, Binder JR, Ivers-Tiffée E (2011) Nonlinear ceramics for tunable microwave devices part I: materials properties and processing. Microsyst Technol 17:203–211CrossRef
3.
go back to reference Maune H, Sazegar M, Zheng Y, Zhou X, Giere A, Scheele P, Paul F, Binder JR, Jakoby R (2011) Nonlinear ceramics for tunable microwave devices Part II: RF-characterization and component design. Microsyst Technol 17:213–224CrossRef Maune H, Sazegar M, Zheng Y, Zhou X, Giere A, Scheele P, Paul F, Binder JR, Jakoby R (2011) Nonlinear ceramics for tunable microwave devices Part II: RF-characterization and component design. Microsyst Technol 17:213–224CrossRef
4.
go back to reference Ahmed A, Goldthorpe IA, Khandani AK (2015) Electrically tunable materials for microwave applications. Appl Phys Rev 2:011302 Ahmed A, Goldthorpe IA, Khandani AK (2015) Electrically tunable materials for microwave applications. Appl Phys Rev 2:011302
5.
go back to reference Kolmogorov AN (1937) On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math Ser 3:355–360 Kolmogorov AN (1937) On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math Ser 3:355–360
6.
go back to reference Avrami M (1939) Kinetics of Phase Change. I General Theory. J Chem Phys 7:1103–1112 Avrami M (1939) Kinetics of Phase Change. I General Theory. J Chem Phys 7:1103–1112
7.
go back to reference Avrami M (1940) Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8:212–224CrossRef Avrami M (1940) Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8:212–224CrossRef
8.
go back to reference Avrami M (1941) Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J Chem Phys 9:177–184CrossRef Avrami M (1941) Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J Chem Phys 9:177–184CrossRef
9.
go back to reference Ishibashi Y, Takagi Y (1971) Note on Ferroelectric Domain Switching. J Phys Soc Jpn 31:506–510CrossRef Ishibashi Y, Takagi Y (1971) Note on Ferroelectric Domain Switching. J Phys Soc Jpn 31:506–510CrossRef
10.
go back to reference Ishibashi Y, Orihara H (1995) A theory of D-E hysteresis loop. Integr Ferroelectr 9:57–61CrossRef Ishibashi Y, Orihara H (1995) A theory of D-E hysteresis loop. Integr Ferroelectr 9:57–61CrossRef
11.
go back to reference Shu W, Wang J, Zhang TY (2012) Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J Appl Phys 112:064108 Shu W, Wang J, Zhang TY (2012) Effect of grain boundary on the electromechanical response of ferroelectric polycrystals. J Appl Phys 112:064108
12.
go back to reference Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. J Mech Phys Solids 55:280–305CrossRef Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. J Mech Phys Solids 55:280–305CrossRef
13.
go back to reference Kim KE, Jeong S, Chu K, Lee JH, Kim GY, Xue F, Koo TY, Chen LQ, Choi SY, Ramesh R, Yang CH (2018) Configurable topological textures in strain graded ferroelectric nanoplates. Nat Commun 9:403CrossRef Kim KE, Jeong S, Chu K, Lee JH, Kim GY, Xue F, Koo TY, Chen LQ, Choi SY, Ramesh R, Yang CH (2018) Configurable topological textures in strain graded ferroelectric nanoplates. Nat Commun 9:403CrossRef
14.
go back to reference Chong KB, Guiu F, Reece MJ (2008) Thermal activation of ferroelectric switching. J Appl Phys 103:014101 Chong KB, Guiu F, Reece MJ (2008) Thermal activation of ferroelectric switching. J Appl Phys 103:014101
15.
go back to reference Leschhorn A, Djoumbou S, Kliem H (2014) Microscopic model of domain wall motion. J Appl Phys 115:114106 Leschhorn A, Djoumbou S, Kliem H (2014) Microscopic model of domain wall motion. J Appl Phys 115:114106
16.
go back to reference Mangeri J, Espinal Y, Jokisaari A, Alpay SP, Nakhmanson S, Heinonen O (2017) Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616–1624CrossRef Mangeri J, Espinal Y, Jokisaari A, Alpay SP, Nakhmanson S, Heinonen O (2017) Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9:1616–1624CrossRef
17.
go back to reference Bastani Y, Schmitz-Kempen T, Roelofs A, Bassiri-Gharb N (2011) Critical thickness for extrinsic contributions to the dielectric and piezoelectric response in lead zirconate titanate ultrathin films. J Appl Phys 109:014115 Bastani Y, Schmitz-Kempen T, Roelofs A, Bassiri-Gharb N (2011) Critical thickness for extrinsic contributions to the dielectric and piezoelectric response in lead zirconate titanate ultrathin films. J Appl Phys 109:014115
18.
go back to reference Johnson KM (1962) Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys 33:2826–2831CrossRef Johnson KM (1962) Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J Appl Phys 33:2826–2831CrossRef
19.
go back to reference DiDomenico M, Johnson DA, Pantell RH (1962) Ferroelectric harmonic generator and the large-signal microwave characteristics of ferroelectric ceramics. J Appl Phys 33:1697–1706CrossRef DiDomenico M, Johnson DA, Pantell RH (1962) Ferroelectric harmonic generator and the large-signal microwave characteristics of ferroelectric ceramics. J Appl Phys 33:1697–1706CrossRef
20.
go back to reference Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric Materials for Microwave Tunable Applications. J Electroceramics 11:5–66CrossRef Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric Materials for Microwave Tunable Applications. J Electroceramics 11:5–66CrossRef
21.
go back to reference Landau LD, Lifshitz EM (1980) Statistical Physics 3rd ed, part 1. Oxford, Elsevier Landau LD, Lifshitz EM (1980) Statistical Physics 3rd ed, part 1. Oxford, Elsevier
22.
go back to reference Ginzburg VL (1945) On the dielectric properties of ferroelectric crystals and of barium titanate. Zh Eksp Teor Fiz 15:739 Ginzburg VL (1945) On the dielectric properties of ferroelectric crystals and of barium titanate. Zh Eksp Teor Fiz 15:739
23.
go back to reference Devonshire AF (1949) Theory of barium titanate - Part 1. Philos Mag 40:1040–1063CrossRef Devonshire AF (1949) Theory of barium titanate - Part 1. Philos Mag 40:1040–1063CrossRef
24.
go back to reference Devonshire AF (1951) Theory of barium titanate - Part 2. Philos Mag 42:1065–1079CrossRef Devonshire AF (1951) Theory of barium titanate - Part 2. Philos Mag 42:1065–1079CrossRef
25.
26.
go back to reference Narayanan M, Tong S, Ma B, Liu S, Balachandran U (2012) Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie Temperature. Appl Phys Lett 100:022907 Narayanan M, Tong S, Ma B, Liu S, Balachandran U (2012) Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie Temperature. Appl Phys Lett 100:022907
27.
go back to reference Placeres-Jiménez R, Rino JP, Eiras JA (2015) Modeling ferroelectric permittivity dependence on electric field and estimation of the intrinsic and extrinsic contributions. J Phys D: Appl Phys 48:035304 Placeres-Jiménez R, Rino JP, Eiras JA (2015) Modeling ferroelectric permittivity dependence on electric field and estimation of the intrinsic and extrinsic contributions. J Phys D: Appl Phys 48:035304
28.
go back to reference Placeres-Jiménez R, Rino JP, Gonçalves AM, Eiras JA (2013) Nonlinear dielectric response and transient current: An effective potential for ferroelectric domain wall displacement. Appl Phys Lett 103:112901 Placeres-Jiménez R, Rino JP, Gonçalves AM, Eiras JA (2013) Nonlinear dielectric response and transient current: An effective potential for ferroelectric domain wall displacement. Appl Phys Lett 103:112901
29.
go back to reference Placeres-Jiménez R, Rino JP, Gonçalves AM, Eiras JA (2015) Domain wall contribution to the nonlinear dielectric response: effective potential model. J Phys D: Appl Phys 48:465301 Placeres-Jiménez R, Rino JP, Gonçalves AM, Eiras JA (2015) Domain wall contribution to the nonlinear dielectric response: effective potential model. J Phys D: Appl Phys 48:465301
30.
go back to reference Placeres-Jiménez R, Eiras JA (2020) Modeling domain walls motion and nonlinear dielectric response. Ferroelectrics 569:295–309CrossRef Placeres-Jiménez R, Eiras JA (2020) Modeling domain walls motion and nonlinear dielectric response. Ferroelectrics 569:295–309CrossRef
31.
go back to reference Placeres-Jiménez R, Rino JP, Fraygola B, Eiras JA (2013) On the capacitance versus voltage response and tunability of ferroelectrics: A microscopic model. J Appl Phys 113:074109 Placeres-Jiménez R, Rino JP, Fraygola B, Eiras JA (2013) On the capacitance versus voltage response and tunability of ferroelectrics: A microscopic model. J Appl Phys 113:074109
32.
go back to reference Miller SL, Nasby RD, Schwank JR, Rodgers MS, Dressendorfer PV (1990) Device modeling of ferroelectric capacitors. J Appl Phys 68:6463–6471CrossRef Miller SL, Nasby RD, Schwank JR, Rodgers MS, Dressendorfer PV (1990) Device modeling of ferroelectric capacitors. J Appl Phys 68:6463–6471CrossRef
33.
go back to reference Miller SL, Schwank JR, Nasby RD, Rodgers MS (1991) Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J Appl Phys 70:2849–2860CrossRef Miller SL, Schwank JR, Nasby RD, Rodgers MS (1991) Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J Appl Phys 70:2849–2860CrossRef
34.
go back to reference Rupprecht G, Bell RO, Silverman BD (1961) Nonlinearity and microwave losses in cubic strontium-titanate. Phys Rev 123:97–98CrossRef Rupprecht G, Bell RO, Silverman BD (1961) Nonlinearity and microwave losses in cubic strontium-titanate. Phys Rev 123:97–98CrossRef
35.
go back to reference Li S, Cao W, Cross LE (1991) The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J Appl Phys 69:7219–7224CrossRef Li S, Cao W, Cross LE (1991) The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J Appl Phys 69:7219–7224CrossRef
36.
go back to reference Weiss P (1911) Sur la rationalité des rapports des moments magnétiques moléculaires et le magnéton. Arch Sci Phys Nat 4:401–438 Weiss P (1911) Sur la rationalité des rapports des moments magnétiques moléculaires et le magnéton. Arch Sci Phys Nat 4:401–438
37.
go back to reference Weiss P (1914) Sur la nature du champ moléculaire. Arch Sci Phys Nat 37:201–213 Weiss P (1914) Sur la nature du champ moléculaire. Arch Sci Phys Nat 37:201–213
38.
go back to reference Lorentz HA (1952) The theory of electrons. Dover Publications, New York Lorentz HA (1952) The theory of electrons. Dover Publications, New York
39.
go back to reference Burfoot J, Taylor G (1979) Polar dielectrics and their applications. Macmillan Press, LondonCrossRef Burfoot J, Taylor G (1979) Polar dielectrics and their applications. Macmillan Press, LondonCrossRef
40.
go back to reference Kuehn M, Kliem H (2009) The method of the local fields: a bridge between molecular modelling and dielectric theory. J Electrostat 67:203–208CrossRef Kuehn M, Kliem H (2009) The method of the local fields: a bridge between molecular modelling and dielectric theory. J Electrostat 67:203–208CrossRef
41.
go back to reference Kuehn M, Kliem H, Martin B (2010) The Weiss Field revisited. Ferroelectrics 400:41–51CrossRef Kuehn M, Kliem H, Martin B (2010) The Weiss Field revisited. Ferroelectrics 400:41–51CrossRef
42.
go back to reference Gonçalves AM, Placeres-Jiménez R, Eiras JA (2021) Exploring the polarization reorientation in polycrystalline ferroelectric thin films from the macroscopic and nanoscopic perspectives. J Alloys Compd 880:160369CrossRef Gonçalves AM, Placeres-Jiménez R, Eiras JA (2021) Exploring the polarization reorientation in polycrystalline ferroelectric thin films from the macroscopic and nanoscopic perspectives. J Alloys Compd 880:160369CrossRef
Metadata
Title
On the ferroelectric dc nonlinear dielectric permittivity and its relation with the macroscopic polarization
Authors
R. Placeres-Jiménez
J. A. Eiras
Publication date
05-07-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 28/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06296-0

Other articles of this Issue 28/2021

Journal of Materials Science 28/2021 Go to the issue

Premium Partners