Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2018

13-11-2017

Optical and magnetic properties of zinc vanadates: synthetic design of colloidal Zn3V2O7(OH)2(H2O)2, ZnV2O4 and Zn3V2O8 nanostructures

Authors: Azam Bayat, Ali Reza Mahjoub, Mostafa M. Amini

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Colloidal hierarchical self-assembled Zn3V2O7(OH)2(H2O)2 superstructures, were synthesized via a simple and large-scale production route and then was converted into ZnV2O4 and Zn3V2O8 by calcination with retaining Zn3V2O7(OH)2(H2O)2 original morphology and hydrophilicity. Prepared compounds were characterized by X-ray diffraction, energy dispersive X-ray analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The optical, magnetic and photoluminescence properties of Zn3V2O7(OH)2(H2O)2, ZnV2O4 and Zn3V2O8 were explored by ultraviolet–visible spectroscopy, vibrating sample magnetometer and emission/excitation spectroscopy, respectively. According to the scanning electron and transmission electron microscopy results, the as-prepared samples were crystallized with a flower-like morphology for the optimized materials. The hierarchical self-assembled flower-like particles were composed of a large number of similar nanosheets with a thickness of 10–70 nm. The photophysical properties investigation of Zn3V2O7(OH)2·2H2O demonstrated that this sample has a wide band gap with photoabsorption ability only in the UV region. The magnetic properties of the ZnV2O4 nanostructures were evaluated, and results showed sample has a ferromagnetic behavior at room temperature. Finally, the optical study of the Zn3V2O8 nanostructure showed a very pronounced red-shifted PL emission for the two excitation wavelengths of 237 and 340 nm in their photoluminescence spectra.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Mondal, M. Ganguly, A.K. Sinha, J. Pal, R. Sahoo, T. Pal, Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water. CrystEngComm 15, 6745–6751 (2013)CrossRef C. Mondal, M. Ganguly, A.K. Sinha, J. Pal, R. Sahoo, T. Pal, Robust cubooctahedron Zn3V2O8 in gram quantity: a material for photocatalytic dye degradation in water. CrystEngComm 15, 6745–6751 (2013)CrossRef
2.
go back to reference A.V. Kasatkin, J. Plášil, I.V. Pekov, D.I. Belakovskiy, F. Nestola, J. Čejka, M.F. Vigasina, F. Zorzi, B. Thorne, Karpenkoite, Co3(V2O7)(OH)2·2H2O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA. Geoscince 60, 251–257 (2015)CrossRef A.V. Kasatkin, J. Plášil, I.V. Pekov, D.I. Belakovskiy, F. Nestola, J. Čejka, M.F. Vigasina, F. Zorzi, B. Thorne, Karpenkoite, Co3(V2O7)(OH)2·2H2O, a cobalt analogue of martyite from the Little Eva mine, Grand County, Utah, USA. Geoscince 60, 251–257 (2015)CrossRef
3.
go back to reference S.Y. Zhang, X. Xiao, M. Lu, Z.Q. Li, Zn3V2O7(OH)2.2H2O and Zn3(VO4)2 3D microspheres as anode materials for lithium-ion batteries. J. Mater. Sci. 48, 3679–3685 (2013)CrossRef S.Y. Zhang, X. Xiao, M. Lu, Z.Q. Li, Zn3V2O7(OH)2.2H2O and Zn3(VO4)2 3D microspheres as anode materials for lithium-ion batteries. J. Mater. Sci. 48, 3679–3685 (2013)CrossRef
4.
go back to reference S. Zhang, N. Lei, W. Ma, Z. Zhang, Z. Sun, Y. Wang, Fabrication of ultra-long Zn3V2O7(OH)2.2H2O nanobelts and its application in lithium-ion batteries. Mater. Lett. 129, 91–94 (2014)CrossRef S. Zhang, N. Lei, W. Ma, Z. Zhang, Z. Sun, Y. Wang, Fabrication of ultra-long Zn3V2O7(OH)2.2H2O nanobelts and its application in lithium-ion batteries. Mater. Lett. 129, 91–94 (2014)CrossRef
5.
go back to reference S. Zhan, F. Zhou, N. Huang, Y. Yin, M. Wang, Y. Yang, Y. Liu, Sonochemical synthesis of Zn3V2O7(OH)2(H2O)2 and g-C3N4/Zn3V2O7(OH)2(H2O)2 with high photocatalytic activities. Mol. Catal. A 401, 41–47 (2015)CrossRef S. Zhan, F. Zhou, N. Huang, Y. Yin, M. Wang, Y. Yang, Y. Liu, Sonochemical synthesis of Zn3V2O7(OH)2(H2O)2 and g-C3N4/Zn3V2O7(OH)2(H2O)2 with high photocatalytic activities. Mol. Catal. A 401, 41–47 (2015)CrossRef
6.
go back to reference F.K. Butt, M. Tahir, C. Cao, F. Idrees, R. Ahmed, W.S. Khan, Z. Ali, N. Mahmood, M. Tanveer, A. Mahmood, I. Aslam, Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. Appl. Mater. Interfaces 6, 13635–13641 (2014)CrossRef F.K. Butt, M. Tahir, C. Cao, F. Idrees, R. Ahmed, W.S. Khan, Z. Ali, N. Mahmood, M. Tanveer, A. Mahmood, I. Aslam, Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. Appl. Mater. Interfaces 6, 13635–13641 (2014)CrossRef
7.
go back to reference F. Duan, Q. Zhang, C. Wei, D. Shi, M. Chen, One-pot synthesis of double-shelled ZnV2O4 hollow nanostructures via a template-free route. Mater. Lett. 92, 231–234 (2013)CrossRef F. Duan, Q. Zhang, C. Wei, D. Shi, M. Chen, One-pot synthesis of double-shelled ZnV2O4 hollow nanostructures via a template-free route. Mater. Lett. 92, 231–234 (2013)CrossRef
8.
go back to reference L. Xiao, Y. Zhao, J. Yin, L. Zhang, Clewlike ZnV2O4 hollow spheres: nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties. Chem. Eur. J. 15, 9442–9450 (2009)CrossRef L. Xiao, Y. Zhao, J. Yin, L. Zhang, Clewlike ZnV2O4 hollow spheres: nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties. Chem. Eur. J. 15, 9442–9450 (2009)CrossRef
9.
go back to reference F.K. Butt, C. Cao, Q. Wanb, P. Li, F. Idrees, M. Tahir, W.S. Khan, Z. Ali, M.J.M. Zapata, M. Safdar, X. Qubi, Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: a prospective material for energy storage. Int. J. Hydrog Energy 39, 7842–7851 (2014)CrossRef F.K. Butt, C. Cao, Q. Wanb, P. Li, F. Idrees, M. Tahir, W.S. Khan, Z. Ali, M.J.M. Zapata, M. Safdar, X. Qubi, Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: a prospective material for energy storage. Int. J. Hydrog Energy 39, 7842–7851 (2014)CrossRef
10.
go back to reference R. Shi, Y. Wang, F. Zhou, Y. Zhu, Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance. J. Mater. Chem. 21, 6313–6320 (2011)CrossRef R. Shi, Y. Wang, F. Zhou, Y. Zhu, Zn3V2O7(OH)2(H2O)2 and Zn3V2O8 nanostructures: controlled fabrication and photocatalytic performance. J. Mater. Chem. 21, 6313–6320 (2011)CrossRef
11.
go back to reference R.R. Cees, Luminescence: From Theory to Applications, 3rd edn. (Wiley, Weinheim, 2008) R.R. Cees, Luminescence: From Theory to Applications, 3rd edn. (Wiley, Weinheim, 2008)
12.
go back to reference Y.W. Jun, J.W. Seo, A.J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189 (2008)CrossRef Y.W. Jun, J.W. Seo, A.J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189 (2008)CrossRef
13.
go back to reference M.A. El-Sayed, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004)CrossRef M.A. El-Sayed, Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004)CrossRef
14.
go back to reference M.F. Garcia, A.M. Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. Chem. Rev. 104, 4063–4104 (2004)CrossRef M.F. Garcia, A.M. Arias, J.C. Hanson, J.A. Rodriguez, Nanostructured oxides in chemistry: characterization and properties. Chem. Rev. 104, 4063–4104 (2004)CrossRef
15.
go back to reference X. Wang, Q. Peng, Y. Li, Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 40, 635–643 (2007)CrossRef X. Wang, Q. Peng, Y. Li, Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 40, 635–643 (2007)CrossRef
16.
go back to reference S. Kinge, M.C. Calama, D.N. Reinhoudt, Self-Assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9, 20–42 (2008)CrossRef S. Kinge, M.C. Calama, D.N. Reinhoudt, Self-Assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9, 20–42 (2008)CrossRef
17.
go back to reference C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. Eur. J. 8, 28–35 (2002)CrossRef C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem. Eur. J. 8, 28–35 (2002)CrossRef
18.
go back to reference H. Zhang, E.W. Edwards, D. Wang, H. Mohwald, Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys. Chem. Chem. Phys. 8, 3288–3299 (2006)CrossRef H. Zhang, E.W. Edwards, D. Wang, H. Mohwald, Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys. Chem. Chem. Phys. 8, 3288–3299 (2006)CrossRef
19.
go back to reference T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265–270 (2006)CrossRef T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Kinetically driven self-assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265–270 (2006)CrossRef
20.
go back to reference Y. Yu, C. Niu, C. Han, K. Zhao, J. Meng, X. Xu, P. Zhang, L. Wang, Y. Wu, L. Mai, Zinc pyrovanadate nanoplates embedded in graphene networks with enhanced electrochemical performance. Ind. Eng. Chem. Res. 55, 2992 – 2999 (2016)CrossRef Y. Yu, C. Niu, C. Han, K. Zhao, J. Meng, X. Xu, P. Zhang, L. Wang, Y. Wu, L. Mai, Zinc pyrovanadate nanoplates embedded in graphene networks with enhanced electrochemical performance. Ind. Eng. Chem. Res. 55, 2992 – 2999 (2016)CrossRef
21.
go back to reference X.F. Cao, L. Zhang, Y.L. Ma, X.T. Chen, J. Inorg. Chem. 26, 787–792 (2010) X.F. Cao, L. Zhang, Y.L. Ma, X.T. Chen, J. Inorg. Chem. 26, 787–792 (2010)
22.
go back to reference W. Jiang, X. Hua, Q. Han, X. Yang, L. Lu, X. Wang, Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method. Powder Technol. 191, 227–230 (2009)CrossRef W. Jiang, X. Hua, Q. Han, X. Yang, L. Lu, X. Wang, Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method. Powder Technol. 191, 227–230 (2009)CrossRef
23.
go back to reference S.A. Tabrizi, E. Nassaj, H. Sarpoolaky, Synthesis of an alumina–YAG nanopowder via sol–gel method. J. Alloys Compd. 456, 282–285 (2008)CrossRef S.A. Tabrizi, E. Nassaj, H. Sarpoolaky, Synthesis of an alumina–YAG nanopowder via sol–gel method. J. Alloys Compd. 456, 282–285 (2008)CrossRef
24.
go back to reference T.D. Nguyen, T.O. Do, Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322–5332 (2009)CrossRef T.D. Nguyen, T.O. Do, Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322–5332 (2009)CrossRef
25.
go back to reference D. Zhao, Q. Yang, Z. Han, F. Sun, K. Tang, F. Yu, Rare earth hydroxycarbonate materials with hierarchical structures: preparation and characterization, and catalytic activity of derived oxides. Solid State Sci. 10, 1028–1036 (2008)CrossRef D. Zhao, Q. Yang, Z. Han, F. Sun, K. Tang, F. Yu, Rare earth hydroxycarbonate materials with hierarchical structures: preparation and characterization, and catalytic activity of derived oxides. Solid State Sci. 10, 1028–1036 (2008)CrossRef
26.
go back to reference J. Yang, J.Y. Ying, Nanocomposites of Ag2S and noble metals. Nat. Mater. 8, 683–689 (2009)CrossRef J. Yang, J.Y. Ying, Nanocomposites of Ag2S and noble metals. Nat. Mater. 8, 683–689 (2009)CrossRef
27.
go back to reference P. Gibot, L. Laffont, Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J. Solid State Chem. 180, 695–701 (2007)CrossRef P. Gibot, L. Laffont, Hydrophilic and hydrophobic nano-sized Mn3O4 particles. J. Solid State Chem. 180, 695–701 (2007)CrossRef
28.
go back to reference D. Li, X.J. Bai, C.S. Pan, Y.F. Zhu, Investigations on the phase transition between CdV2O6 and Cd2V2O7 and their photocatalytic performances. Eur. J. Inorg. Chem. 2013, 3070–3075 (2013)CrossRef D. Li, X.J. Bai, C.S. Pan, Y.F. Zhu, Investigations on the phase transition between CdV2O6 and Cd2V2O7 and their photocatalytic performances. Eur. J. Inorg. Chem. 2013, 3070–3075 (2013)CrossRef
29.
30.
go back to reference D.J. Wang, Y. Masuda, W.S. Seo, K. Koumoto, Metal-oxide-semiconductor (MOS) devices composed of biomimetically synthesized TiO2 dielectric thin films. Key Eng. Mater. 214, 163–168 (2002)CrossRef D.J. Wang, Y. Masuda, W.S. Seo, K. Koumoto, Metal-oxide-semiconductor (MOS) devices composed of biomimetically synthesized TiO2 dielectric thin films. Key Eng. Mater. 214, 163–168 (2002)CrossRef
31.
go back to reference K. Manickathai, S.K. Viswanathan, M. Alagar, Synthesis and characterization of CdO and CdS nanoparticles. Indian J. Pure Appl. Phys. 46, 561–564 (2008) K. Manickathai, S.K. Viswanathan, M. Alagar, Synthesis and characterization of CdO and CdS nanoparticles. Indian J. Pure Appl. Phys. 46, 561–564 (2008)
32.
go back to reference T.D. Nguyen, D. Mrabet, T.T.D. Vu, C.T. Dinh, T.O. Do, Biomolecule-assisted route for shape-controlled synthesis of single-crystalline MnWO4 nanoparticles and spontaneous assembly of polypeptide-stabilized mesocrystal microspheres. CrystEngComm 13, 1450–1460 (2011)CrossRef T.D. Nguyen, D. Mrabet, T.T.D. Vu, C.T. Dinh, T.O. Do, Biomolecule-assisted route for shape-controlled synthesis of single-crystalline MnWO4 nanoparticles and spontaneous assembly of polypeptide-stabilized mesocrystal microspheres. CrystEngComm 13, 1450–1460 (2011)CrossRef
33.
go back to reference S.G. Ebbinghaus, J. Hanss, M. Klemmb, S. Hornb, Crystal structure and magnetic properties of ZnV2O4.. J. Alloys Compd. 370, 75–79 (2004)CrossRef S.G. Ebbinghaus, J. Hanss, M. Klemmb, S. Hornb, Crystal structure and magnetic properties of ZnV2O4.. J. Alloys Compd. 370, 75–79 (2004)CrossRef
34.
go back to reference V. Nivoix, B. Gillot, Intermediate valencies of vanadium cations appearing during oxidation of vanadium–iron spinels. Mater. Chem. Phys. 63, 24–29 (2000)CrossRef V. Nivoix, B. Gillot, Intermediate valencies of vanadium cations appearing during oxidation of vanadium–iron spinels. Mater. Chem. Phys. 63, 24–29 (2000)CrossRef
35.
go back to reference F. Mazloom, M.M. Arani, M.G. Arani, M.S. Niasari, Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46–53 (2016)CrossRef F. Mazloom, M.M. Arani, M.G. Arani, M.S. Niasari, Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46–53 (2016)CrossRef
36.
go back to reference Y. Kato, Quantum Monte-Carlo study of magnetic ordering in ZnV2O4. Phys. Procedia 34, 60–65 (2012)CrossRef Y. Kato, Quantum Monte-Carlo study of magnetic ordering in ZnV2O4. Phys. Procedia 34, 60–65 (2012)CrossRef
37.
go back to reference D.A. Hoyos, A. Echavarria, C. Saldarriaga, Synthesis and structure of a porous zinc vanadate, Zn3(VO4)2·3H2O. J. Mater. Sci. 36, 5515–5518 (2001)CrossRef D.A. Hoyos, A. Echavarria, C. Saldarriaga, Synthesis and structure of a porous zinc vanadate, Zn3(VO4)2·3H2O. J. Mater. Sci. 36, 5515–5518 (2001)CrossRef
38.
go back to reference S.S. Pitale, G. Mukut, I.M. Nagpure, O.M. Ntwaeaborwa, B.G.B. Bezuidenhoudt, H.C. Swart, A comparative study on structural, morphological and luminescence characteristics of Zn3(VO4)2 phosphor prepared via hydrothermal and citrate-gel combustion routes. Phys. B 407, 1485–1486 (2012)CrossRef S.S. Pitale, G. Mukut, I.M. Nagpure, O.M. Ntwaeaborwa, B.G.B. Bezuidenhoudt, H.C. Swart, A comparative study on structural, morphological and luminescence characteristics of Zn3(VO4)2 phosphor prepared via hydrothermal and citrate-gel combustion routes. Phys. B 407, 1485–1486 (2012)CrossRef
39.
go back to reference B.D. Boiyo, Comparative Investigation on Structural and Optical Properties of a Yellow-Emitting Zn 3 (Vo 4 ) 2 : Ce 3+ Phosphor for Applications in White Light Emitting Devices (Kenyatta University, Kenyatta, 2015) B.D. Boiyo, Comparative Investigation on Structural and Optical Properties of a Yellow-Emitting Zn 3 (Vo 4 ) 2 : Ce 3+ Phosphor for Applications in White Light Emitting Devices (Kenyatta University, Kenyatta, 2015)
Metadata
Title
Optical and magnetic properties of zinc vanadates: synthetic design of colloidal Zn3V2O7(OH)2(H2O)2, ZnV2O4 and Zn3V2O8 nanostructures
Authors
Azam Bayat
Ali Reza Mahjoub
Mostafa M. Amini
Publication date
13-11-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8222-6

Other articles of this Issue 4/2018

Journal of Materials Science: Materials in Electronics 4/2018 Go to the issue