Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Overview of MEMS Packaging Technologies

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Packaging for MEMS (microelectromechanical systems) is attracting increased interest because it is being recognized as an essential technique for successful commercialization of MEMS product. Similar to integrated circuit (IC) packaging in microelectronics, packaging of MEMS bears the highest cost within the whole manufacturing processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Esashi, Wafer level packaging of MEMS. J. Micromech. Microeng. 18, 073001 (2008)CrossRef M. Esashi, Wafer level packaging of MEMS. J. Micromech. Microeng. 18, 073001 (2008)CrossRef
2.
go back to reference R.W. Bower, M.S. Ismail, B.E. Roberds, Low temperature Si3N4 direct bonding. Appl. Phys. Lett. 62, 3485–3487 (1993)CrossRef R.W. Bower, M.S. Ismail, B.E. Roberds, Low temperature Si3N4 direct bonding. Appl. Phys. Lett. 62, 3485–3487 (1993)CrossRef
3.
go back to reference H. Takagi, R. Maeda, T.R. Chung, T. Suga, Low temperature direct bonding of silicon and silicon dioxide by the surface activation method. Int. Conf. Solid-State Sens. Actuators, Transducer 97(1), 657–660 (1997)CrossRef H. Takagi, R. Maeda, T.R. Chung, T. Suga, Low temperature direct bonding of silicon and silicon dioxide by the surface activation method. Int. Conf. Solid-State Sens. Actuators, Transducer 97(1), 657–660 (1997)CrossRef
4.
go back to reference B. Lee, S. Seok, K. Chun, A study on wafer level vacuum packaging for MEMS devices. J. Micromech. Microeng. 13(5), 663–669 (2003)CrossRef B. Lee, S. Seok, K. Chun, A study on wafer level vacuum packaging for MEMS devices. J. Micromech. Microeng. 13(5), 663–669 (2003)CrossRef
5.
go back to reference S. Tanaka, Wafer-level hermetic MEMS packaging by anodic bonding and its reliability issues. Microelectron. Reliab. 54(5), 875–881 (2014)CrossRef S. Tanaka, Wafer-level hermetic MEMS packaging by anodic bonding and its reliability issues. Microelectron. Reliab. 54(5), 875–881 (2014)CrossRef
6.
go back to reference S. Lemettre, S. Seok, N. Isac, J. Moulin, A. Bosseboeuf, Low temperature solid-liquid interdiffusion wafer and die bonding based on PVD thin Sn/Cu films. Microsyst. Technol. (2016) S. Lemettre, S. Seok, N. Isac, J. Moulin, A. Bosseboeuf, Low temperature solid-liquid interdiffusion wafer and die bonding based on PVD thin Sn/Cu films. Microsyst. Technol. (2016)
7.
go back to reference S. Seok, M. Fryziel, N. Rolland, P.-A. Rolland, Enhancement of bonding strength of packaging based on BCB bonding for RF devices. Microsyst. Technol. 18(12), 2035–2039 (2012)CrossRef S. Seok, M. Fryziel, N. Rolland, P.-A. Rolland, Enhancement of bonding strength of packaging based on BCB bonding for RF devices. Microsyst. Technol. 18(12), 2035–2039 (2012)CrossRef
8.
go back to reference H.C. Kim, S. Seok, I. Kim, S.-D. Choi, K. Chun, in Transducers’05, Seoul, Korea. Inertial-Grade Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers (DRXLs) (2005), pp. 172–179 H.C. Kim, S. Seok, I. Kim, S.-D. Choi, K. Chun, in Transducers’05, Seoul, Korea. Inertial-Grade Out-of-Plane and In-Plane Differential Resonant Silicon Accelerometers (DRXLs) (2005), pp. 172–179
9.
go back to reference S. Seok, K. Chun, An inertial-grade in-plane resonant silicon accelerometer. Electron. Lett. 42(19), 755–757 (2006)CrossRef S. Seok, K. Chun, An inertial-grade in-plane resonant silicon accelerometer. Electron. Lett. 42(19), 755–757 (2006)CrossRef
10.
go back to reference I. Kim, S. Seok, H.C. Kim, M.K. Kang, K. Chun, Wafer level vacuum packaged out-of-plane and in-plane differential resonant silicon accelerometers for navigational applications. J. Semicond. Technol. Sci. (JSTS) 5(1), 58–66 (2005) I. Kim, S. Seok, H.C. Kim, M.K. Kang, K. Chun, Wafer level vacuum packaged out-of-plane and in-plane differential resonant silicon accelerometers for navigational applications. J. Semicond. Technol. Sci. (JSTS) 5(1), 58–66 (2005)
11.
go back to reference S. Tanaka, H. Fukushi, in Transducers 2015, Anchorage, Alaska, USA. Comprehensive study on Wafer-Level Vacuum Packaging Using Anodically-Bondable LTCC Wafer and Thin Film Getter (2015), pp. 468–471 S. Tanaka, H. Fukushi, in Transducers 2015, Anchorage, Alaska, USA. Comprehensive study on Wafer-Level Vacuum Packaging Using Anodically-Bondable LTCC Wafer and Thin Film Getter (2015), pp. 468–471
12.
go back to reference S. Tanaka, S. Matsuzaki, M. Mohri, A. Okada, H. Fukushi, M. Esashi, in 24th IEEE International Conference on Micro ElectroMechanical Systems (MEMS 2011), Cancun, Mexico. Wafer-Level Hermetic Packaging Technology for MEMS Using Anodically-Bondable LTCC Wafer (2011), pp. 376–379 S. Tanaka, S. Matsuzaki, M. Mohri, A. Okada, H. Fukushi, M. Esashi, in 24th IEEE International Conference on Micro ElectroMechanical Systems (MEMS 2011), Cancun, Mexico. Wafer-Level Hermetic Packaging Technology for MEMS Using Anodically-Bondable LTCC Wafer (2011), pp. 376–379
13.
go back to reference K. Stamoulis, C.H. Tsau, S. Mark Spearing, in Proceedings of the SPIE. Low-Temperature Wafer-Level Gold Thermocompression Bonding: Modeling of Flatness Deviations and Associated Process Optimization for High Yield and Tough Bonds, vol. 5716, (2005), pp. 42–52 K. Stamoulis, C.H. Tsau, S. Mark Spearing, in Proceedings of the SPIE. Low-Temperature Wafer-Level Gold Thermocompression Bonding: Modeling of Flatness Deviations and Associated Process Optimization for High Yield and Tough Bonds, vol. 5716, (2005), pp. 42–52
14.
go back to reference M.M. Torunbalci, S.E. Alper, T. Akin, Advanced MEMS process for wafer level hermetic encapsulation of MEMS devices using SOI cap wafers with vertical Feedthroughs. J. Microelectromechan. Syst. 24(3), 556–564 (2015)CrossRef M.M. Torunbalci, S.E. Alper, T. Akin, Advanced MEMS process for wafer level hermetic encapsulation of MEMS devices using SOI cap wafers with vertical Feedthroughs. J. Microelectromechan. Syst. 24(3), 556–564 (2015)CrossRef
15.
go back to reference W.C. Welch III, Vacuum and hermetic packaging of MEMS using solder. Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 2008 W.C. Welch III, Vacuum and hermetic packaging of MEMS using solder. Ph.D. dissertation, University of Michigan, Ann Arbor, MI, USA, 2008
16.
go back to reference Y.T. Cheng, L. Lin, K. Najafi, Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. J. Microelectomech. Syst. 9(1), 3–8 (2000)CrossRef Y.T. Cheng, L. Lin, K. Najafi, Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging. J. Microelectomech. Syst. 9(1), 3–8 (2000)CrossRef
17.
go back to reference L. Lin, MEMS post-packaging by localized heating and bonding. IEEE Trans. Adv. Packag. 23(4), 608–616 (2000)CrossRef L. Lin, MEMS post-packaging by localized heating and bonding. IEEE Trans. Adv. Packag. 23(4), 608–616 (2000)CrossRef
18.
go back to reference R.N. Candler, M.A. Hopcroft, B. Kim, W.-T. Park, R. Melamud, M. Agarwal, G. Yama, A. Partridge, M. Lutz, T.W. Kenny, Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J. Microelectomech. Syst. 15(6), 1446–1456 (2006)CrossRef R.N. Candler, M.A. Hopcroft, B. Kim, W.-T. Park, R. Melamud, M. Agarwal, G. Yama, A. Partridge, M. Lutz, T.W. Kenny, Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J. Microelectomech. Syst. 15(6), 1446–1456 (2006)CrossRef
19.
go back to reference F. Santagata, J.J.M. Zaal, V.G. Huerta, L. Mele, J.F. Creemer, P.M. Sarro, Mechanical design and characterization for MEMS thin-film packaging. J. Microelectromech. Syst. 21(1), 100–109 (2012)CrossRef F. Santagata, J.J.M. Zaal, V.G. Huerta, L. Mele, J.F. Creemer, P.M. Sarro, Mechanical design and characterization for MEMS thin-film packaging. J. Microelectromech. Syst. 21(1), 100–109 (2012)CrossRef
20.
go back to reference J. Zekry, D.S. Tezcan, J.-P. Celis, R. Puers, C. Van Hoof, H.A.C. Tilmans, in Proceedings of 16th International Solid-State Sensors Actuators Microsystems Conference (Transducers). Wafer-Level Thin Film Vacuum Packages for MEMS Using Nanoporous Anodic Alumina Membranes (2011), pp. 974–977 J. Zekry, D.S. Tezcan, J.-P. Celis, R. Puers, C. Van Hoof, H.A.C. Tilmans, in Proceedings of 16th International Solid-State Sensors Actuators Microsystems Conference (Transducers). Wafer-Level Thin Film Vacuum Packages for MEMS Using Nanoporous Anodic Alumina Membranes (2011), pp. 974–977
21.
go back to reference B.-K. Lee, D.-H. Choi, J.-B. Yoon, Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices. J. Micromech. Microeng. 20, 045002 (2010)CrossRef B.-K. Lee, D.-H. Choi, J.-B. Yoon, Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices. J. Micromech. Microeng. 20, 045002 (2010)CrossRef
22.
go back to reference E.S. Park, J. Jeon, V. Subramanian, T.-J. King Liu, in MEMS 2012, Paris, France. Inkjet-printed microshell encapsulation: a new zero-level packaging technology, 29 Jan–2 Feb 2012, pp. 357–360 E.S. Park, J. Jeon, V. Subramanian, T.-J. King Liu, in MEMS 2012, Paris, France. Inkjet-printed microshell encapsulation: a new zero-level packaging technology, 29 Jan–2 Feb 2012, pp. 357–360
23.
go back to reference D.I. Forehand, C.L. Goldsmith, in 2005 ASME InterPACK ‘05 Tech Conference, San Francisco, CA. Wafer Level Micropackaging for RF MEMS Switches (2005) D.I. Forehand, C.L. Goldsmith, in 2005 ASME InterPACK ‘05 Tech Conference, San Francisco, CA. Wafer Level Micropackaging for RF MEMS Switches (2005)
24.
go back to reference I. Zine-El-Abidine, M. Okoniewski, A low-temperature SU-8 based wafer-level hermetic packaging for MEMS devices. IEEE Trans. Adv. Packag. 32(2), 448–452 (2009)CrossRef I. Zine-El-Abidine, M. Okoniewski, A low-temperature SU-8 based wafer-level hermetic packaging for MEMS devices. IEEE Trans. Adv. Packag. 32(2), 448–452 (2009)CrossRef
25.
go back to reference E. Uzunlar, P.A. Kohl, Size-compatible, polymer-based air-gap formation processes, and polymer residue analysis for wafer-level MEMS packaging applications. J. Electron. Packag 137, 041001-1 (2015)CrossRef E. Uzunlar, P.A. Kohl, Size-compatible, polymer-based air-gap formation processes, and polymer residue analysis for wafer-level MEMS packaging applications. J. Electron. Packag 137, 041001-1 (2015)CrossRef
26.
go back to reference P. Monajemi, P.J. Joseph, P.A. Kohl, F. Ayazi, Wafer-level MEMS packaging via thermally released metal-organic membranes. J. Micromech. Microeng. 16(4), 742–750 (2006)CrossRef P. Monajemi, P.J. Joseph, P.A. Kohl, F. Ayazi, Wafer-level MEMS packaging via thermally released metal-organic membranes. J. Micromech. Microeng. 16(4), 742–750 (2006)CrossRef
27.
go back to reference M.B. Cohn, R.T. Howe, Wafer-to-Wafer Transfer of Microstructures Using Break-Away Tethers, US Patent 6,142,358, 2000 M.B. Cohn, R.T. Howe, Wafer-to-Wafer Transfer of Microstructures Using Break-Away Tethers, US Patent 6,142,358, 2000
28.
go back to reference J.-Y. Chen, L.-S. Huang, C.-H. Chu, C. Peizen, A new transferred ultra-thin silicon micropackaging. J. Micromech. Microeng. 12, 406–409 (2002)CrossRef J.-Y. Chen, L.-S. Huang, C.-H. Chu, C. Peizen, A new transferred ultra-thin silicon micropackaging. J. Micromech. Microeng. 12, 406–409 (2002)CrossRef
29.
go back to reference W.C. Welch III, J. Chae, K. Najafi, Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Trans. Adv. Packag. 28(4), 643–649 (2005)CrossRef W.C. Welch III, J. Chae, K. Najafi, Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Trans. Adv. Packag. 28(4), 643–649 (2005)CrossRef
30.
go back to reference S. Tanaka, M. Yoshida, H. Hirano, T. Somekawa, M. Fujita, M. Esashi, in IEEE MEMS 2013, Taipei. Wafer-to-Wafer Selective Flip-Chip Transfer by Sticky Silicone Bonding and Laser Debonding for Rapid and Easy Integration Test, 20–24 Jan 2003, pp. 271–274 S. Tanaka, M. Yoshida, H. Hirano, T. Somekawa, M. Fujita, M. Esashi, in IEEE MEMS 2013, Taipei. Wafer-to-Wafer Selective Flip-Chip Transfer by Sticky Silicone Bonding and Laser Debonding for Rapid and Easy Integration Test, 20–24 Jan 2003, pp. 271–274
31.
go back to reference S. Tanaka, M. Yoshida, H. Hirano, M. Esashi, Lithium niobate SAW device hetero-transferred onto silicon integrated circuit using elastic and sticky bumps. IEEE international ultrasonics symposium, Dresden, Germany, 7–10 Oct 2012, pp. 1047–1050 S. Tanaka, M. Yoshida, H. Hirano, M. Esashi, Lithium niobate SAW device hetero-transferred onto silicon integrated circuit using elastic and sticky bumps. IEEE international ultrasonics symposium, Dresden, Germany, 7–10 Oct 2012, pp. 1047–1050
32.
go back to reference S. Seok, N. Rolland, P.-A. Rolland, Packaging methodology for RF devices using a BCB membrane transfer technique. J. Micromech. Microeng. 16(11), 2384–2388 (2006)CrossRef S. Seok, N. Rolland, P.-A. Rolland, Packaging methodology for RF devices using a BCB membrane transfer technique. J. Micromech. Microeng. 16(11), 2384–2388 (2006)CrossRef
33.
go back to reference J. Kim, S. Seok, N. Rolland, Polymer-based zero-level packaging technology for high frequency RF applications by wafer bonding/debonding technique using an anti-adhesion layer. Int. J. Precis. Eng. Manuf. (IJPEM) 13(10), 1861–1867 (2012)CrossRef J. Kim, S. Seok, N. Rolland, Polymer-based zero-level packaging technology for high frequency RF applications by wafer bonding/debonding technique using an anti-adhesion layer. Int. J. Precis. Eng. Manuf. (IJPEM) 13(10), 1861–1867 (2012)CrossRef
34.
go back to reference S. Seok, Fabrication and modeling of nitride thin film encapsulation based on anti-adhesion-assisted transfer technique and nitride/BCB bilayer wrinkling. IEEE Trans. Compon. Packag. Manuf. Technol. (CPMT) 6(9), 1301–1307 (2016)CrossRef S. Seok, Fabrication and modeling of nitride thin film encapsulation based on anti-adhesion-assisted transfer technique and nitride/BCB bilayer wrinkling. IEEE Trans. Compon. Packag. Manuf. Technol. (CPMT) 6(9), 1301–1307 (2016)CrossRef
Metadata
Title
Overview of MEMS Packaging Technologies
Author
Seonho Seok
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-77872-3_1

Premium Partners