Skip to main content
Top
Published in: Numerical Algorithms 1/2021

02-03-2020 | Original Paper

Parallel reduction of four matrices to condensed form for a generalized matrix eigenvalue algorithm

Author: Nela Bosner

Published in: Numerical Algorithms | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The VZ algorithm proposed by Charles F. Van Loan (SIMA, 1975) attempts to solve the generalized type of matrix eigenvalue problem ACx = λBDx, where A, BRn×m, C, DRm×n, and mn, without forming products and inverses. Especially, this algorithm is suitable for solving the generalized singular value problem. Van Loan’s approach first reduces the matrices A, B, C, and D to a condensed form by the finite step initial reduction. The reduction finds orthogonal matrices Q, U, V, and Z, such that QAZ is upper Hessenberg, and QBV, ZTCU, and VTDU are upper triangular. In this initial reduction, A is reduced to upper Hessenberg form, while simultaneously preserving triangularity of other three matrices. This is done by Givens rotations, annihilating one by one element of A, and by generating three more rotations applied to other matrices per each annihilation. Such an algorithm is quite inefficient. In our work, we propose a blocked algorithm for the initial reduction, based on aggregated Givens rotations and matrix–matrix multiplications, which are applied in the outer loop updates. This algorithm has another level of blocking, exploited in the inner loop. Further, we also consider a variant of the algorithm in a hybrid CPU–GPU framework, where compute-intensive outer loop updates are performed on GPU, and can be overlapped with the reduction in the next step performed on CPU. On the other hand, application of a sequence of rotations in the inner loop is parallelized on CPU, with balanced operation count per thread. Since a large number of aggregated rotations are produced in every outer loop step, they are simultaneously accumulated before outer loop updates. These adjustments speed up original initial reduction considerably which is confirmed by numerical experiments, and the efficiency of the whole VZ algorithm is increased.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alter, O., Brown, P.O., Botstein, D.: Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad. Sci. USA 100, 3351–3356 (2003)CrossRef Alter, O., Brown, P.O., Botstein, D.: Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad. Sci. USA 100, 3351–3356 (2003)CrossRef
2.
go back to reference Antoulas, A.C., Sorensen, D.C.: Approximation of large–scale dynamical systems: an overview. Int. J. Appl. Math. Comput. Sci. 11, 1093–1121 (2001)MathSciNetMATH Antoulas, A.C., Sorensen, D.C.: Approximation of large–scale dynamical systems: an overview. Int. J. Appl. Math. Comput. Sci. 11, 1093–1121 (2001)MathSciNetMATH
3.
go back to reference Bai, Z., Demmel, J.W.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1464–1486 (1993)MathSciNetCrossRef Bai, Z., Demmel, J.W.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1464–1486 (1993)MathSciNetCrossRef
4.
go back to reference Bai, Z., Zha, H.: A new preprocessing algorithm for the computation of the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1007–1012 (1993)MathSciNetCrossRef Bai, Z., Zha, H.: A new preprocessing algorithm for the computation of the generalized singular value decomposition. SIAM J. Sci. Comput. 14, 1007–1012 (1993)MathSciNetCrossRef
5.
go back to reference Benner, P.: Computational methods for linear–quadratic optimization. Supplemento ai Rendiconti del Circolo Matematico di Palermo Serrie II(58), 21–56 (1999)MathSciNetMATH Benner, P.: Computational methods for linear–quadratic optimization. Supplemento ai Rendiconti del Circolo Matematico di Palermo Serrie II(58), 21–56 (1999)MathSciNetMATH
6.
go back to reference Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24, 165–190 (2002)MathSciNetCrossRef Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24, 165–190 (2002)MathSciNetCrossRef
7.
go back to reference Benner, P., Byers, R., Mehrmann, V., Xu, H.: Robust numerical methods for robust control. Technical Report 06-2004, Institut für Mathematik, TU Berlin (2004) Benner, P., Byers, R., Mehrmann, V., Xu, H.: Robust numerical methods for robust control. Technical Report 06-2004, Institut für Mathematik, TU Berlin (2004)
8.
go back to reference Bhuyan, K., Singh, S.B., Bhuyan, P.K.: Application of generalized singular value decomposition to ionospheric tomography. Annal. Geophys. 22, 3437–3444 (2004)CrossRef Bhuyan, K., Singh, S.B., Bhuyan, P.K.: Application of generalized singular value decomposition to ionospheric tomography. Annal. Geophys. 22, 3437–3444 (2004)CrossRef
9.
go back to reference Bischof, C., Van Loan, C.F.: The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput. 8, 2–13 (1987)MathSciNetCrossRef Bischof, C., Van Loan, C.F.: The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput. 8, 2–13 (1987)MathSciNetCrossRef
10.
go back to reference Bojanczyk, A., Golub, G.H., Van Dooren, P.: The periodic Schur decomposition; algorithm and applications. In: Proceedings of SPIE Conference, vol. 1770, pp. 31–42 (1992) Bojanczyk, A., Golub, G.H., Van Dooren, P.: The periodic Schur decomposition; algorithm and applications. In: Proceedings of SPIE Conference, vol. 1770, pp. 31–42 (1992)
11.
go back to reference Bosner, N.: Efficient algorithm for simultaneous reduction to the m-Hessenberg-triangular-triangular form. BIT 55, 677–703 (2015)MathSciNetCrossRef Bosner, N.: Efficient algorithm for simultaneous reduction to the m-Hessenberg-triangular-triangular form. BIT 55, 677–703 (2015)MathSciNetCrossRef
12.
go back to reference Bosner, N., Karlsson, L.: Parallel and heterogeneous m–Hessenberg–triangular–triangular reduction. SIAM J. Sci. Comput. 39, C29–C47 (2017)MathSciNetCrossRef Bosner, N., Karlsson, L.: Parallel and heterogeneous m–Hessenberg–triangular–triangular reduction. SIAM J. Sci. Comput. 39, C29–C47 (2017)MathSciNetCrossRef
13.
go back to reference Demmel, J.W., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)MathSciNetCrossRef Demmel, J.W., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)MathSciNetCrossRef
14.
go back to reference Falk, S., Langemeyer, P. Schuff, H.K. (ed.): Das Jacobische Rotationsverfahren Fur Reel Symmetrische Matrizenpaare I, II. Friedr. Vieweg & Sohn, Braunschweig (1960) Falk, S., Langemeyer, P. Schuff, H.K. (ed.): Das Jacobische Rotationsverfahren Fur Reel Symmetrische Matrizenpaare I, II. Friedr. Vieweg & Sohn, Braunschweig (1960)
15.
16.
go back to reference Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd Edn. The Johns Hopkins University Press, Baltimore and London (1996) Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd Edn. The Johns Hopkins University Press, Baltimore and London (1996)
17.
go back to reference Hari, V.: On Cyclic Jacobi Methods for the Positive Definite Generalized Eigenvalue Problem, publisher=PhD Thesis, FernUniversität-Gesamthochschule, Hagen (1984) Hari, V.: On Cyclic Jacobi Methods for the Positive Definite Generalized Eigenvalue Problem, publisher=PhD Thesis, FernUniversität-Gesamthochschule, Hagen (1984)
18.
go back to reference Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002) Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
19.
go back to reference Higham, N.J., Konstantinov, M., Mehmann, V., Petkov, P.: The sensitivity of computational control problems. IEEE Control Syst. Mag. 24, 28–43 (2004) Higham, N.J., Konstantinov, M., Mehmann, V., Petkov, P.: The sensitivity of computational control problems. IEEE Control Syst. Mag. 24, 28–43 (2004)
20.
go back to reference Kågström, B., Kressner, D., Quintana-Ortí, E.S., Quintana-Ortí, G.: Blocked algorithms for the reduction to Hessenberg-triangular form revisited. BIT 48, 563–584 (2008)MathSciNetCrossRef Kågström, B., Kressner, D., Quintana-Ortí, E.S., Quintana-Ortí, G.: Blocked algorithms for the reduction to Hessenberg-triangular form revisited. BIT 48, 563–584 (2008)MathSciNetCrossRef
21.
go back to reference Kogbetliantz, E.: Diagonalization of General Complex Matrices as a New Method for Solution of Linear Equations. In: Proc. of Intern. Congr. Math, vol. 2, 356–357. Amsterdam (1954) Kogbetliantz, E.: Diagonalization of General Complex Matrices as a New Method for Solution of Linear Equations. In: Proc. of Intern. Congr. Math, vol. 2, 356–357. Amsterdam (1954)
22.
go back to reference Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems Lecture Notes in Computational Science and Engineering, vol. 46. Springer, Heidelberg (2005) Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems Lecture Notes in Computational Science and Engineering, vol. 46. Springer, Heidelberg (2005)
23.
go back to reference Kuo, S.R., Yeih, W., Wu, Y.C.: Applications of the generalized singular-value decomposition method on the eigenproblem using the incomplete boundary element formulation. J. Sound Vibr. 235, 813–845 (2000)MathSciNetCrossRef Kuo, S.R., Yeih, W., Wu, Y.C.: Applications of the generalized singular-value decomposition method on the eigenproblem using the incomplete boundary element formulation. J. Sound Vibr. 235, 813–845 (2000)MathSciNetCrossRef
25.
go back to reference Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)MathSciNetCrossRef Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)MathSciNetCrossRef
26.
go back to reference Moore, B.C.: Principal component analysis in linear systems: controllability, observabilitiy, and model reduction. IEEE Trans. Automat. Control. 26, 17–32 (1981)MathSciNetCrossRef Moore, B.C.: Principal component analysis in linear systems: controllability, observabilitiy, and model reduction. IEEE Trans. Automat. Control. 26, 17–32 (1981)MathSciNetCrossRef
28.
go back to reference Novaković, V., Singer, S., Singer, S.: Blocking and parallelization of the Hari–Zimmermann variant of the Falk–Langemeyer algorithm for the generalized SVD. Parallel Comput. 49, 136–152 (2015)MathSciNetCrossRef Novaković, V., Singer, S., Singer, S.: Blocking and parallelization of the Hari–Zimmermann variant of the Falk–Langemeyer algorithm for the generalized SVD. Parallel Comput. 49, 136–152 (2015)MathSciNetCrossRef
30.
go back to reference Paige, C.C.: Computing the generalized singular value decomposition. SIAM J. Sci. Stat. Comput. 7, 1126–1146 (1986)MathSciNetCrossRef Paige, C.C.: Computing the generalized singular value decomposition. SIAM J. Sci. Stat. Comput. 7, 1126–1146 (1986)MathSciNetCrossRef
31.
go back to reference Schreiber, R., Van Loan, C.F.: A storage–efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)MathSciNetCrossRef Schreiber, R., Van Loan, C.F.: A storage–efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)MathSciNetCrossRef
32.
33.
go back to reference Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state–space system. Internat. J. Control 46, 1319–1330 (1987)MathSciNetCrossRef Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of a stable non-minimal state–space system. Internat. J. Control 46, 1319–1330 (1987)MathSciNetCrossRef
Metadata
Title
Parallel reduction of four matrices to condensed form for a generalized matrix eigenvalue algorithm
Author
Nela Bosner
Publication date
02-03-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 1/2021
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-020-00883-z

Other articles of this Issue 1/2021

Numerical Algorithms 1/2021 Go to the issue

Premium Partner