Skip to main content
Top
Published in: Archive of Applied Mechanics 11/2021

29-07-2021 | Original

Parametric study of planar flexible deployable structures consisting of Scissor-like elements using a novel multibody dynamic analysis methodology

Authors: Bo Li, Chaoqun Duan, Qian Peng, Sanmin Wang, U-Xuan Tan

Published in: Archive of Applied Mechanics | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A general methodology for the dynamic modeling and analysis of planar flexible deployable structures consisting of scissor-like elements (SLEs) is presented. This modeling method is based on a comprehensive consideration of the symmetry and array characteristics of deployable structure and on an improved absolute node coordinate formulation (ANCF), which can model the warping of beam section using the locking-free shear deformable beam element. An effective node separation method is proposed to reduce the number of degrees of freedom of the dynamic equation in the ANCF framework, eliminate the constraint equations within and between SLEs and obtain a compact matrix. This reduction method has good adaptability and can be extended to all kinds of scissor deployable structures with array characteristics, whether they are planar or spatial structures. In addition, the modified generalized \(\alpha\) method is utilized to solve the motion equations of deployable structure and eliminate the false high-frequency response generated in the calculation process. Finally, the methodology is validated using a cantilever beam case, and the parametric dynamic response of 2 × 2 and 1 × 2 deployable structures is implemented in this paper. The obtained results show that flexibility has an important impact on the dynamic characteristics of large deployable structures, and the deployable structure is unstable near \(0^{ \circ }\) and \(90^{ \circ }\), and its safe working angle is \(17^{ \circ }\)\(75^{ \circ }\). It is necessary to carry out parametric research on this structures in the design stage because the prediction of these parameters such as initial configuration and component materials can improve the stability and deployment accuracy of deployable structures in orbit.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cai, J.G., Deng, X.W., Zhang, Y.T., et al.: Folding behavior of a foldable prismatic mast with kresling origami pattern. J. Mech. Robot. 8(3), JMR-15-1160 (2016) Cai, J.G., Deng, X.W., Zhang, Y.T., et al.: Folding behavior of a foldable prismatic mast with kresling origami pattern. J. Mech. Robot. 8(3), JMR-15-1160 (2016)
2.
go back to reference Jin, Y.L., Liu, T., Lyu, R.X., et al.: Theoretical analysis and experimental investigation on buckling of FAST Mast deployable structures. Int. J. Struct. Stab. Dyn. 15(5), 1450075 (2015)MathSciNetMATHCrossRef Jin, Y.L., Liu, T., Lyu, R.X., et al.: Theoretical analysis and experimental investigation on buckling of FAST Mast deployable structures. Int. J. Struct. Stab. Dyn. 15(5), 1450075 (2015)MathSciNetMATHCrossRef
3.
go back to reference Cai, J., Deng, X., Xu, Y., et al.: Geometry and motion analysis of origami-based deployable shelter structures. J. Struct. Eng. 141(10), 06015001 (2015)CrossRef Cai, J., Deng, X., Xu, Y., et al.: Geometry and motion analysis of origami-based deployable shelter structures. J. Struct. Eng. 141(10), 06015001 (2015)CrossRef
4.
go back to reference Otsuka, K., Makihara, K.: Absolute nodal coordinate beam element for modeling flexible and deployable aerospace structures. AIAA J. 57(3), 1343–1346 (2019)CrossRef Otsuka, K., Makihara, K.: Absolute nodal coordinate beam element for modeling flexible and deployable aerospace structures. AIAA J. 57(3), 1343–1346 (2019)CrossRef
5.
go back to reference Li, Y.Y., Wang, C., Huang, W.H.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019)CrossRef Li, Y.Y., Wang, C., Huang, W.H.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019)CrossRef
6.
go back to reference Wu, C., Viquerat, A.: Computational and experimental study on dynamic instability of extended bistable carbon/epoxy booms subjected to bending. Compos. Struct. 188(Mar.), 347–355 (2018)CrossRef Wu, C., Viquerat, A.: Computational and experimental study on dynamic instability of extended bistable carbon/epoxy booms subjected to bending. Compos. Struct. 188(Mar.), 347–355 (2018)CrossRef
7.
go back to reference You, B.D., Liang, D., Hao, P.B., et al.: Deployment dynamical behavior of planetary rover mast mechanism considering geometric nonlinearity and laminated structure characteristics. Arch. Appl. Mech. 3, 1605–1623 (2020)CrossRef You, B.D., Liang, D., Hao, P.B., et al.: Deployment dynamical behavior of planetary rover mast mechanism considering geometric nonlinearity and laminated structure characteristics. Arch. Appl. Mech. 3, 1605–1623 (2020)CrossRef
8.
go back to reference Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Compos. Methods Appl. Mech. Eng. 195, 6860–6873 (2006)MATHCrossRef Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. Compos. Methods Appl. Mech. Eng. 195, 6860–6873 (2006)MATHCrossRef
9.
go back to reference Zhang, Y.Q., Duan, B.Y., Li, T.J.: A controlled deployment method for flexible deployable space antennas. Acta Astronaut. 81(1), 19–29 (2012)CrossRef Zhang, Y.Q., Duan, B.Y., Li, T.J.: A controlled deployment method for flexible deployable space antennas. Acta Astronaut. 81(1), 19–29 (2012)CrossRef
10.
11.
go back to reference Peng, Q.A., Wang, S.M., Li, B., et al.: Dynamics analysis of deployable structures considering a two-dimensional coupled thermo-structural effect. Int. J. Aerosp. Eng. 2018, 1752815 (2018) Peng, Q.A., Wang, S.M., Li, B., et al.: Dynamics analysis of deployable structures considering a two-dimensional coupled thermo-structural effect. Int. J. Aerosp. Eng. 2018, 1752815 (2018)
12.
go back to reference Li, T., Wang, Y.: Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp. Sci. Technol. 13(4–5), 210–215 (2009)CrossRef Li, T., Wang, Y.: Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp. Sci. Technol. 13(4–5), 210–215 (2009)CrossRef
13.
go back to reference Orzechowski, G.: Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation. Arch. Mech. Eng. 59(3), 283–296 (2012)MathSciNetCrossRef Orzechowski, G.: Analysis of beam elements of circular cross section using the absolute nodal coordinate formulation. Arch. Mech. Eng. 59(3), 283–296 (2012)MathSciNetCrossRef
14.
go back to reference Khude, N.N.: Efficient simulation of flexible body systems with frictional contact/impact. Dissertations and theses, Gradworks (2015) Khude, N.N.: Efficient simulation of flexible body systems with frictional contact/impact. Dissertations and theses, Gradworks (2015)
15.
go back to reference Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)MATHCrossRef Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)MATHCrossRef
16.
go back to reference Kübler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparametric solid brick elements. In: ASME 2003 international design engineering technical conferences and computers and in-formation in engineering conference, pp. 31–52 (2003) Kübler, L., Eberhard, P., Geisler, J.: Flexible multibody systems with large deformations using absolute nodal coordinates for isoparametric solid brick elements. In: ASME 2003 international design engineering technical conferences and computers and in-formation in engineering conference, pp. 31–52 (2003)
17.
go back to reference Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91, 2171–2202 (2018)CrossRef Pappalardo, C.M., Zhang, Z.G., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91, 2171–2202 (2018)CrossRef
18.
go back to reference Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89, 1019–1045 (2017)MathSciNetMATHCrossRef Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89, 1019–1045 (2017)MathSciNetMATHCrossRef
19.
go back to reference Karin, N., Peter, G., Johannes, G.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 92–110 (2013) Karin, N., Peter, G., Johannes, G.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 92–110 (2013)
20.
go back to reference Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: problem definition. ASME J. Comput. Nonlinear Dyn. 2, 146–154 (2007)CrossRef Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: problem definition. ASME J. Comput. Nonlinear Dyn. 2, 146–154 (2007)CrossRef
21.
go back to reference Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference (DETC2005–85104), pp. 24–28. Long Beach (2005). Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference (DETC2005–85104), pp. 24–28. Long Beach (2005).
22.
go back to reference Nachbagauer, K., Pechstein, A.S., Irschik, H., et al.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)MATHCrossRef Nachbagauer, K., Pechstein, A.S., Irschik, H., et al.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)MATHCrossRef
23.
go back to reference Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on the absolute nodal coordinate formulation. Multibody dynamics. Comput. Methods Appl. Sci. 28, 77–96 (2013)MATHCrossRef Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on the absolute nodal coordinate formulation. Multibody dynamics. Comput. Methods Appl. Sci. 28, 77–96 (2013)MATHCrossRef
24.
go back to reference Dufva, K., Sopanen, J., Mikkola, A., et al.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3), 719–738 (2005)CrossRef Dufva, K., Sopanen, J., Mikkola, A., et al.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280(3), 719–738 (2005)CrossRef
25.
go back to reference Gantes, C.: Analytical predictions of the snap-through characteristics of deployable structures. Trans. Built Environ. 21, 83–92 (1996) Gantes, C.: Analytical predictions of the snap-through characteristics of deployable structures. Trans. Built Environ. 21, 83–92 (1996)
26.
go back to reference Gantes, C., Konitopoulou, E.: Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size. Int. J. Solids Struct. 41, 5517–5540 (2004)MATHCrossRef Gantes, C., Konitopoulou, E.: Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size. Int. J. Solids Struct. 41, 5517–5540 (2004)MATHCrossRef
27.
go back to reference Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42(8), 2287–2301 (2005)MATHCrossRef Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42(8), 2287–2301 (2005)MATHCrossRef
28.
go back to reference Li, Y.Y., Wang, Z.L., Wang, C., et al.: Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance. Acta Astronaut. 142, 138–151 (2018)CrossRef Li, Y.Y., Wang, Z.L., Wang, C., et al.: Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance. Acta Astronaut. 142, 138–151 (2018)CrossRef
29.
go back to reference Li, Y.Y., Wang, C., Huang, W.H.: Rigid-flexible-thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller. Nonlinear Dyn. 96, 2031–2053 (2019)CrossRef Li, Y.Y., Wang, C., Huang, W.H.: Rigid-flexible-thermal analysis of planar composite solar array with clearance joint considering torsional spring, latch mechanism and attitude controller. Nonlinear Dyn. 96, 2031–2053 (2019)CrossRef
30.
go back to reference Otsuka, K., Makihara, K.: ANCF-ICE beam element for modeling highly flexible and deployable aerospace structures. In: AIAA Scitech 2019 Forum, 2019, San Diego, California Otsuka, K., Makihara, K.: ANCF-ICE beam element for modeling highly flexible and deployable aerospace structures. In: AIAA Scitech 2019 Forum, 2019, San Diego, California
31.
go back to reference Liu, C., Tian, Q., Yan, D., et al.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)MathSciNetMATHCrossRef Liu, C., Tian, Q., Yan, D., et al.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)MathSciNetMATHCrossRef
32.
go back to reference Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)CrossRef Floreano, D., Wood, R.J.: Science, technology and the future of small autonomous drones. Nature 521(7553), 460–466 (2015)CrossRef
33.
go back to reference Hachem, C., Hanaor, A., Karni, E.: Evaluation of biological deployable systems. Int. J. Space Struct. 20(4), 189–200 (2005)CrossRef Hachem, C., Hanaor, A., Karni, E.: Evaluation of biological deployable systems. Int. J. Space Struct. 20(4), 189–200 (2005)CrossRef
34.
go back to reference Lederman, G., Zhong, Y., Glišić, B.: A novel deployable tied arch bridge. Eng. Struct. 70(3), 1–10 (2014)CrossRef Lederman, G., Zhong, Y., Glišić, B.: A novel deployable tied arch bridge. Eng. Struct. 70(3), 1–10 (2014)CrossRef
35.
go back to reference Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshed. Adv. Mech. 43, 390–414 (2013) Hu, H.Y., Tian, Q., Zhang, W., et al.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshed. Adv. Mech. 43, 390–414 (2013)
36.
go back to reference Li, B., Wang, S.M., Zhi, C.J., et al.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017)CrossRef Li, B., Wang, S.M., Zhi, C.J., et al.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017)CrossRef
38.
go back to reference Friedman, N.: Investigation of highly flexible, deployable structures: review, modelling, control, experiments and application. In: Budapest University of Technology and Economics (BME). Budapest: Hungary (2012) Friedman, N.: Investigation of highly flexible, deployable structures: review, modelling, control, experiments and application. In: Budapest University of Technology and Economics (BME). Budapest: Hungary (2012)
39.
go back to reference Li, B., Wang, S.M., Yuan, R., et al. Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 0954406215607903 (2016) Li, B., Wang, S.M., Yuan, R., et al. Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 0954406215607903 (2016)
40.
go back to reference Li, B., Wang, S.M., Makis, V., et al.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 095440621771027 (2017) Li, B., Wang, S.M., Makis, V., et al.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. In: Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989–1996, pp. 203–210, 095440621771027 (2017)
41.
go back to reference Sun, Y., Wang, S., Li, J., et al.: Mobility analysis of the deployable structure of SLE based on screw theory. Chin. J. Mech. Eng. 26(4), 793–800 (2013)CrossRef Sun, Y., Wang, S., Li, J., et al.: Mobility analysis of the deployable structure of SLE based on screw theory. Chin. J. Mech. Eng. 26(4), 793–800 (2013)CrossRef
42.
go back to reference Yildiz, K., Lesieutre, G.A.: Effective beam stiffness properties of n-strut cylindrical tensegrity towers. AIAA J. 57(5), 2185–2194 (2019)CrossRef Yildiz, K., Lesieutre, G.A.: Effective beam stiffness properties of n-strut cylindrical tensegrity towers. AIAA J. 57(5), 2185–2194 (2019)CrossRef
43.
go back to reference Peng, Q.A., Wang, S.M., Zhi, C., et al.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32(1), 1–10 (2019)CrossRef Peng, Q.A., Wang, S.M., Zhi, C., et al.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32(1), 1–10 (2019)CrossRef
44.
go back to reference Peng, Q.A., Wang, S.M., Li, B., et al.: A novel thermo-flexible coupled dynamics analysis method of planar deployable structures in the deploying process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1989–1996 233(17), 6089–6098 (2019)CrossRef Peng, Q.A., Wang, S.M., Li, B., et al.: A novel thermo-flexible coupled dynamics analysis method of planar deployable structures in the deploying process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1989–1996 233(17), 6089–6098 (2019)CrossRef
45.
go back to reference Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable bear for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)CrossRef Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable bear for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)CrossRef
46.
go back to reference Daniel, G.-V., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)MATH Daniel, G.-V., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)MATH
47.
go back to reference Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 614–621 (2001)CrossRef Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 614–621 (2001)CrossRef
48.
go back to reference Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)CrossRef Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)CrossRef
49.
go back to reference Shabana, A.A.: Coupling between shear and bending in the analysis of beam problems: planar case. J. Sound Vib. 419, 510–525 (2018)CrossRef Shabana, A.A.: Coupling between shear and bending in the analysis of beam problems: planar case. J. Sound Vib. 419, 510–525 (2018)CrossRef
50.
go back to reference Wang, W.T.: Modeling and Analysis of the Double-Link Flexible Manipulator Based on the Absolute Nodal Coordinate Formulation. X’ian University of Technology, X’ian (2015) Wang, W.T.: Modeling and Analysis of the Double-Link Flexible Manipulator Based on the Absolute Nodal Coordinate Formulation. X’ian University of Technology, X’ian (2015)
51.
go back to reference Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)CrossRef Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)CrossRef
52.
go back to reference Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018)CrossRef Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018)CrossRef
53.
go back to reference Li, Y., Luo, Z., Liu, Z., et al.: Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings. Arch. Appl. Mech. 89(7), 2381–2395 (2019)CrossRef Li, Y., Luo, Z., Liu, Z., et al.: Nonlinear dynamic behaviors of a bolted joint rotor system supported by ball bearings. Arch. Appl. Mech. 89(7), 2381–2395 (2019)CrossRef
54.
go back to reference Askari, E., Flores, P.: Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints. Arch. Appl. Mech. 90(3), 2091–2111 (2020)CrossRef Askari, E., Flores, P.: Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints. Arch. Appl. Mech. 90(3), 2091–2111 (2020)CrossRef
Metadata
Title
Parametric study of planar flexible deployable structures consisting of Scissor-like elements using a novel multibody dynamic analysis methodology
Authors
Bo Li
Chaoqun Duan
Qian Peng
Sanmin Wang
U-Xuan Tan
Publication date
29-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 11/2021
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-021-01997-z

Other articles of this Issue 11/2021

Archive of Applied Mechanics 11/2021 Go to the issue

Premium Partners