Skip to main content
Top
Published in: Wireless Networks 6/2020

18-03-2020

Performance evaluation of a C-RAN supporting a mixture of random and quasi-random traffic

Authors: Iskanter-Alexandros Chousainov, Ioannis Moscholios, Alexandros Kaloxylos, Michael Logothetis

Published in: Wireless Networks | Issue 6/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we consider a cloud radio access network (C-RAN) where the remote radio heads (RRHs) are separated from the baseband signal processing servers, named baseband units (BBUs). The latter forms a centralized pool of high-performance data center resources. To benefit from network function virtualization, we consider virtualized BBU (V-BBU) resources where the BBU functionality and services have been virtualized in the form of virtual network functions. All RRHs in the C-RAN form a single cluster. Each RRH of such a cluster may accommodate random or quasi-random traffic. That means that new calls in a RRH can be generated by an infinite number of mobile users (random traffic) or by a finite number of mobile users (quasi-random traffic). An arriving call requires a radio resource unit from the serving RRH and a computational resource unit from the V-BBU. If these resource units are available, then the call is accepted and remains in the system for a generally distributed service time. Otherwise, the call is blocked and lost. In order to analyze this C-RAN we model it as a loss system and study two cases: (i) all RRHs accommodate quasi-random traffic and (ii) some RRHs accommodate random traffic and the rest accommodate quasi-random traffic. In both cases, we show that the steady state probabilities have a product form solution and propose convolution algorithms for the accurate determination of the main teletraffic performance measure which is congestion probability. The accuracy of these algorithms is verified via simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Checko, A., et al. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys and Tutorials, 17(1), 405–426. 1st Quart.CrossRef Checko, A., et al. (2015). Cloud RAN for mobile networks—A technology overview. IEEE Communications Surveys and Tutorials, 17(1), 405–426. 1st Quart.CrossRef
2.
go back to reference Kazi, B., & Wainer, G. (2019). Next generation wireless cellular networks: Ultra dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25(4), 2041–2064.CrossRef Kazi, B., & Wainer, G. (2019). Next generation wireless cellular networks: Ultra dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25(4), 2041–2064.CrossRef
3.
go back to reference CPRI Consortium. (2015). CPRI specification V7.0 common public radio interface (CPRI); interface specification. CPRI Consortium. (2015). CPRI specification V7.0 common public radio interface (CPRI); interface specification.
4.
go back to reference Mukhlif, F., Noordin, K., Mansoor, A., & Kasirun, Z. (2019). Green transmission of C-RAN based on SWIPT in 5G: A review. Wireless Networks, 25(5), 2621–2649.CrossRef Mukhlif, F., Noordin, K., Mansoor, A., & Kasirun, Z. (2019). Green transmission of C-RAN based on SWIPT in 5G: A review. Wireless Networks, 25(5), 2621–2649.CrossRef
5.
go back to reference Network Function Virtualisation (NFV). (2014). Management and orchestration, document ETSI GS NFV-MAN 001 (V1.1.1), December 2014. Network Function Virtualisation (NFV). (2014). Management and orchestration, document ETSI GS NFV-MAN 001 (V1.1.1), December 2014.
6.
go back to reference Chen, T., Matinmikko, M., Chen, X., Zhou, X., & Ahokangas, P. (2015). Software defined mobile networks: Concept, survey, and research directions. IEEE Communications Magazine, 53(11), 126–133.CrossRef Chen, T., Matinmikko, M., Chen, X., Zhou, X., & Ahokangas, P. (2015). Software defined mobile networks: Concept, survey, and research directions. IEEE Communications Magazine, 53(11), 126–133.CrossRef
7.
go back to reference Stasiak, M., Glabowski, M., Wisniewski, A., & Zwierzykowski, P. (2011). Modeling and dimensioning of mobile networks. Hoboken, NJ: Wiley. Stasiak, M., Glabowski, M., Wisniewski, A., & Zwierzykowski, P. (2011). Modeling and dimensioning of mobile networks. Hoboken, NJ: Wiley.
8.
go back to reference Glabowski, M., Hanczewski, M., & Stasiak, M. (2016). Modelling load balancing mechanisms in self-optimizing 4G mobile networks with elastic and adaptive traffic. IEICE Transactions on Communications, E99–B(8), 1718–1726.CrossRef Glabowski, M., Hanczewski, M., & Stasiak, M. (2016). Modelling load balancing mechanisms in self-optimizing 4G mobile networks with elastic and adaptive traffic. IEICE Transactions on Communications, E99–B(8), 1718–1726.CrossRef
9.
go back to reference Casares-Giner, V., Martinez-Bauset, J., & Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks, 24(4), 1327–1342.CrossRef Casares-Giner, V., Martinez-Bauset, J., & Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks, 24(4), 1327–1342.CrossRef
10.
go back to reference Vassilakis, V., Moscholios, I., & Logothetis, M. (2018). Quality of service differentiation in heterogeneous CDMA networks. Wireless Networks, 24(4), 1279–1295.CrossRef Vassilakis, V., Moscholios, I., & Logothetis, M. (2018). Quality of service differentiation in heterogeneous CDMA networks. Wireless Networks, 24(4), 1279–1295.CrossRef
11.
go back to reference Moscholios, I., & Logothetis, M. (2019). Efficient multirate teletraffic loss models beyond Erlang. Hoboken: Wiley. Moscholios, I., & Logothetis, M. (2019). Efficient multirate teletraffic loss models beyond Erlang. Hoboken: Wiley.
12.
go back to reference Wang, L., & Zhou, S. (2017). On the fronthaul statistical multiplexing gain. IEEE Commun. Letters, 21(5), 1099–1102.CrossRef Wang, L., & Zhou, S. (2017). On the fronthaul statistical multiplexing gain. IEEE Commun. Letters, 21(5), 1099–1102.CrossRef
13.
go back to reference Larsen, L., Checko, A., & Christiansen, H. (2019). A survey of the functional splits proposed for 5G mobile crosshaul networks. IEEE Commun. Surveys Tuts, 21(1), 146–172. 1st Quart.CrossRef Larsen, L., Checko, A., & Christiansen, H. (2019). A survey of the functional splits proposed for 5G mobile crosshaul networks. IEEE Commun. Surveys Tuts, 21(1), 146–172. 1st Quart.CrossRef
14.
go back to reference Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.CrossRef Dai, B., & Yu, W. (2016). Energy efficiency of downlink transmission strategies for cloud radio access networks. IEEE Journal on Selected Areas in Communications, 34(4), 1037–1050.CrossRef
15.
go back to reference Li, Y., Jiang, T., Luo, K., & Mao, S. (2017). Green heterogeneous cloud radio access networks: Potential techniques, performance trade-offs, and challenges. IEEE Communications Magazine, 55(11), 33–39.CrossRef Li, Y., Jiang, T., Luo, K., & Mao, S. (2017). Green heterogeneous cloud radio access networks: Potential techniques, performance trade-offs, and challenges. IEEE Communications Magazine, 55(11), 33–39.CrossRef
16.
go back to reference Ahmad, I., et al. (2018). Overview of 5G security challenges and solutions. IEEE Communications Standards Magazine, 2(1), 36–43.CrossRef Ahmad, I., et al. (2018). Overview of 5G security challenges and solutions. IEEE Communications Standards Magazine, 2(1), 36–43.CrossRef
17.
go back to reference Liu, J., Zhou, S., Gong, J., Niu, Z., & Xu, S. (2014). On the statistical multiplexing gain of virtual base station pools. In Proceedings of IEEE Globecom (pp. 2283–2288), Austin, TX, USA. Liu, J., Zhou, S., Gong, J., Niu, Z., & Xu, S. (2014). On the statistical multiplexing gain of virtual base station pools. In Proceedings of IEEE Globecom (pp. 2283–2288), Austin, TX, USA.
18.
go back to reference Avramova, A., Christiansen, H., & Iversen, V. (2015). Cell deployment optimization for cloud radio access network using teletraffic theory. In: Proceedings of advanced international conference on telecommunications (AICT), Brussels, Belgium. Avramova, A., Christiansen, H., & Iversen, V. (2015). Cell deployment optimization for cloud radio access network using teletraffic theory. In: Proceedings of advanced international conference on telecommunications (AICT), Brussels, Belgium.
19.
go back to reference Checko, A., Avramova, A., Burger, M., & Christiansen, H. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172.CrossRef Checko, A., Avramova, A., Burger, M., & Christiansen, H. (2016). Evaluating C-RAN fronthaul functional splits in terms of network level energy and cost savings. Journal of Communications and Networks, 18(2), 162–172.CrossRef
20.
go back to reference Iversen, V., Benetis, V., & Hansen, P. (2004). Performance of hierarchical cellular networks with overlapping cells. In Proceedings of EuroNGI workshop, Wadern, Germany. Iversen, V., Benetis, V., & Hansen, P. (2004). Performance of hierarchical cellular networks with overlapping cells. In Proceedings of EuroNGI workshop, Wadern, Germany.
21.
go back to reference Moscholios, I., Vassilakis, V., Logothetis, M., & Boucouvalas, A. (2017). State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Transactions on Wireless Communications, 16(8), 5481–5497.CrossRef Moscholios, I., Vassilakis, V., Logothetis, M., & Boucouvalas, A. (2017). State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Transactions on Wireless Communications, 16(8), 5481–5497.CrossRef
22.
go back to reference Liu, J., Zhou, S., Gong, J., Niu, Z., & Xu, S. (2016). Statistical multiplexing gain analysis of heterogeneous virtual base station pools in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(8), 5681–5694.CrossRef Liu, J., Zhou, S., Gong, J., Niu, Z., & Xu, S. (2016). Statistical multiplexing gain analysis of heterogeneous virtual base station pools in cloud radio access networks. IEEE Transactions on Wireless Communications, 15(8), 5681–5694.CrossRef
23.
go back to reference Han, C., Wang, W., Wang, Y., & Zhang, Z. (2017). Computational resource constrained multi-cell joint processing in cloud radio access networks. In Proceedings of IEEE ICC, Paris, France. Han, C., Wang, W., Wang, Y., & Zhang, Z. (2017). Computational resource constrained multi-cell joint processing in cloud radio access networks. In Proceedings of IEEE ICC, Paris, France.
24.
go back to reference Wang, K., & Yang, K. (2016). Power-minimization computing resource allocation in mobile cloud-radio access network. In Proceedings of international conference on computer and information technology (CIT), Nadi, Fiji. Wang, K., & Yang, K. (2016). Power-minimization computing resource allocation in mobile cloud-radio access network. In Proceedings of international conference on computer and information technology (CIT), Nadi, Fiji.
25.
go back to reference Ramakrishnan, S., Kar, S., & Selvamuthu, D. (2019). Analysis of energy efficiency in cloud based heterogeneous RAN with large-scale antenna systems. Computer Networks, 149, 265–276.CrossRef Ramakrishnan, S., Kar, S., & Selvamuthu, D. (2019). Analysis of energy efficiency in cloud based heterogeneous RAN with large-scale antenna systems. Computer Networks, 149, 265–276.CrossRef
26.
go back to reference Fakhri, Z., Khan, M., Sabir, F., & Al-Raweshidy, H. (2018). A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept. IEEE Transactions on Network Science and Engineering, 5(4), 261–275.CrossRef Fakhri, Z., Khan, M., Sabir, F., & Al-Raweshidy, H. (2018). A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept. IEEE Transactions on Network Science and Engineering, 5(4), 261–275.CrossRef
27.
go back to reference Ben Ali, K., & Zarai, F. (2019). Adaptive radio resource management scheme in 5G networks support for IoT applications. In Proceedings of international conference on internet of things: Systems, management and security (IOTSMS), Granada, Spain. Ben Ali, K., & Zarai, F. (2019). Adaptive radio resource management scheme in 5G networks support for IoT applications. In Proceedings of international conference on internet of things: Systems, management and security (IOTSMS), Granada, Spain.
29.
go back to reference Moscholios, I., & Logothetis, M. (2010). The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Computer Communications, 33(supplement 1), S167–S179.CrossRef Moscholios, I., & Logothetis, M. (2010). The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Computer Communications, 33(supplement 1), S167–S179.CrossRef
30.
go back to reference Moscholios, I., Vardakas, J., Logothetis, M., & Boucouvalas, A. (2013). Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic. Annals of Telecommunications, 68(5), 327–344.CrossRef Moscholios, I., Vardakas, J., Logothetis, M., & Boucouvalas, A. (2013). Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic. Annals of Telecommunications, 68(5), 327–344.CrossRef
31.
go back to reference Ezhilchelvan, P., & Mitrani, I. (2017). Multi-class resource sharing with batch arrivals and complete blocking. In Proceedings of international conference on quantitative evaluation of systems (QEST), Lecture Notes in Computer Science, (Vol. 10503), Springer. Ezhilchelvan, P., & Mitrani, I. (2017). Multi-class resource sharing with batch arrivals and complete blocking. In Proceedings of international conference on quantitative evaluation of systems (QEST), Lecture Notes in Computer Science, (Vol. 10503), Springer.
32.
go back to reference Moscholios, I., Vassilakis, V., & Sarigiannidis, P. (2018). Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy. IET Networks, 7(4), 242–247.CrossRef Moscholios, I., Vassilakis, V., & Sarigiannidis, P. (2018). Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy. IET Networks, 7(4), 242–247.CrossRef
Metadata
Title
Performance evaluation of a C-RAN supporting a mixture of random and quasi-random traffic
Authors
Iskanter-Alexandros Chousainov
Ioannis Moscholios
Alexandros Kaloxylos
Michael Logothetis
Publication date
18-03-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02301-7

Other articles of this Issue 6/2020

Wireless Networks 6/2020 Go to the issue