Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2020

28-10-2020

Performance of Mechanical Joints Prepared from Carbon-Fiber-Reinforced Polymer Nanocomposites under Accelerated Environmental Aging

Authors: Mohit Kumar, J. S. Saini, H. Bhunia

Published in: Journal of Materials Engineering and Performance | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of environmental aging on the durability of the civil structural components made of fiber/epoxy composites is a big concern for many industries nowadays. For that reason, accelerated environmental aging was performed on the bolted joints prepared from carbon/epoxy composites. The bolted joints were designed using ASTM D 5961 having an edge to diameter ratio and width to diameter ratio as 5 and 6, respectively. The cyclic exposure of ultraviolet radiation for 8 h at 60 °C and condensation for 4 h at 50 °C was used under accelerated environmental aging conditions according to ASTM G154 standard for 0, 250, 500, 750 and 1000 h. It was found that at shorter durations, the positive effect occurred with increased strength, whereas the strength decreased for longer durations. The failure loads were found for neat and multi-walled carbon nanotube (MWCNT) added composite bolted joints for unaged and aged conditions at varying bolt preloads. The MWCNT added composites shows better results than neat composites. It was also observed that bolt preloads improved the load-bearing capacity for MWCNT added composite joints even after 1000 h of accelerated aging.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Soutis, Fibre Reinforced Composites in Aircraft Construction, Prog. Aerosp. Sci., 2005, 41(2), p 143–151 C. Soutis, Fibre Reinforced Composites in Aircraft Construction, Prog. Aerosp. Sci., 2005, 41(2), p 143–151
2.
go back to reference M. Holmes, Global Carbon Fibre Market Remains on Upward Trend, Reinf. Plast., 2014, 58(6), p 38–45 M. Holmes, Global Carbon Fibre Market Remains on Upward Trend, Reinf. Plast., 2014, 58(6), p 38–45
3.
go back to reference A. Jacob, Carbon Fibre and Cars-2013 in Review, Reinf. Plast., 2014, 58(1), p 18–29 A. Jacob, Carbon Fibre and Cars-2013 in Review, Reinf. Plast., 2014, 58(1), p 18–29
4.
go back to reference F. Rubino, A. Nistico, F. Tucci, and P. Carlone, Marine Application of Fiber Reinforced Composites: A Review, J. Marine Sci. Eng., 2020, 8(1), p 26–35 F. Rubino, A. Nistico, F. Tucci, and P. Carlone, Marine Application of Fiber Reinforced Composites: A Review, J. Marine Sci. Eng., 2020, 8(1), p 26–35
5.
go back to reference S. Gopi, P. Balakrishnan, M. Sreekala, A. Pius, and S. Thomas, Green Materials for Aerospace Industries, Biocomposites for High-Performance Applications, 1st ed., D. Ray, Ed., Woodhead Publishing, Sawston, 2017, p 307–318 S. Gopi, P. Balakrishnan, M. Sreekala, A. Pius, and S. Thomas, Green Materials for Aerospace Industries, Biocomposites for High-Performance Applications, 1st ed., D. Ray, Ed., Woodhead Publishing, Sawston, 2017, p 307–318
6.
go back to reference I. Panaitescu, T. Koch, and V.M. Archodoulaki, Accelerated Aging of a Glass Fiber/Polyurethane Composite for Automotive Applications, Polym. Test., 2019, 74, p 245–256 I. Panaitescu, T. Koch, and V.M. Archodoulaki, Accelerated Aging of a Glass Fiber/Polyurethane Composite for Automotive Applications, Polym. Test., 2019, 74, p 245–256
7.
go back to reference S.S. Pendhari, T. Kant, and Y.M. Desai, Application of Polymer Composites in Civil Construction: A General Review, Compos. Struct., 2008, 84(2), p 114–124 S.S. Pendhari, T. Kant, and Y.M. Desai, Application of Polymer Composites in Civil Construction: A General Review, Compos. Struct., 2008, 84(2), p 114–124
8.
go back to reference P. Yusong, M. Jiaheng, and D. Jie, Effect of Carbon Fiber Surface Modification on the Mechanical Properties of Carbon-Fiber-Reinforced Ultrahigh-Molecular-Weight Polyethylene Composite, J. Mater. Eng. Perform., 2019, 28(4), p 1995–2005 P. Yusong, M. Jiaheng, and D. Jie, Effect of Carbon Fiber Surface Modification on the Mechanical Properties of Carbon-Fiber-Reinforced Ultrahigh-Molecular-Weight Polyethylene Composite, J. Mater. Eng. Perform., 2019, 28(4), p 1995–2005
9.
go back to reference V. Lopresto, A. Langella, and I. Papa, Interaction of Water with Carbon Fiber Reinforced Polymer Laminates under Dynamic Loading Conditions, J. Mater. Eng. Perform., 2019, 28(6), p 3220–3227 V. Lopresto, A. Langella, and I. Papa, Interaction of Water with Carbon Fiber Reinforced Polymer Laminates under Dynamic Loading Conditions, J. Mater. Eng. Perform., 2019, 28(6), p 3220–3227
10.
go back to reference B.P. Panda, S. Mohanty, and S.K. Nayak, Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties, J. Mater. Eng. Perform., 2014, 23(9), p 3229–3244 B.P. Panda, S. Mohanty, and S.K. Nayak, Polyolefin Nanocomposites with Enhanced Photostability Weathering Effect on Morphology and Mechanical Properties, J. Mater. Eng. Perform., 2014, 23(9), p 3229–3244
11.
go back to reference C. Javier, T. Smith, J. LeBlanc, and A. Shukla, Effect of Prolonged Ultraviolet Radiation Exposure on the Blast Response of Fiber Reinforced Composite Plates, J. Mater. Eng. Perform., 2019, 28(6), p 3174–3185 C. Javier, T. Smith, J. LeBlanc, and A. Shukla, Effect of Prolonged Ultraviolet Radiation Exposure on the Blast Response of Fiber Reinforced Composite Plates, J. Mater. Eng. Perform., 2019, 28(6), p 3174–3185
12.
go back to reference K.K. Mahato, K. Dutta, and B.C. Ray, Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions, J. Polym. Environ., 2018, 26(3), p 1024–1050 K.K. Mahato, K. Dutta, and B.C. Ray, Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions, J. Polym. Environ., 2018, 26(3), p 1024–1050
13.
go back to reference M. Singh, J. Saini, and H. Bhunia, Investigation on Failure Modes for Pin Joints Made from Unidirectional Glass-Epoxy Nanoclay Laminates, Fatig. Frac. Eng. Mater. Struct., 2016, 39(3), p 320–334 M. Singh, J. Saini, and H. Bhunia, Investigation on Failure Modes for Pin Joints Made from Unidirectional Glass-Epoxy Nanoclay Laminates, Fatig. Frac. Eng. Mater. Struct., 2016, 39(3), p 320–334
14.
go back to reference K. Singh, J. Saini, H. Bhunia, and J. Singh, Investigations to Increase the Failure Load for Joints in Glass Epoxy Composites, J. Mech. Eng. Sci., 2019, 233(6), p 2074–2090 K. Singh, J. Saini, H. Bhunia, and J. Singh, Investigations to Increase the Failure Load for Joints in Glass Epoxy Composites, J. Mech. Eng. Sci., 2019, 233(6), p 2074–2090
15.
go back to reference A.H.I. Mourad and N. Zaaroura, Impact of Nanofillers Incorporation on Laminated Nanocomposites Performance, J. Mater. Eng. Perform., 2018, 27(9), p 4453–4461 A.H.I. Mourad and N. Zaaroura, Impact of Nanofillers Incorporation on Laminated Nanocomposites Performance, J. Mater. Eng. Perform., 2018, 27(9), p 4453–4461
16.
go back to reference W. Liu, S.V. Hoa, and M. Pugh, Fracture Toughness and Water Uptake of High-Performance Epoxy/Nanoclay Nanocomposites, Compos. Sci. Technol., 2005, 65(15–16), p 2364–2373 W. Liu, S.V. Hoa, and M. Pugh, Fracture Toughness and Water Uptake of High-Performance Epoxy/Nanoclay Nanocomposites, Compos. Sci. Technol., 2005, 65(15–16), p 2364–2373
17.
go back to reference B.G. Kumar, P.S. Raman, and N. Toshio, Degradation of Carbon Fiber-Reinforced Epoxy Composites by Ultraviolet Radiation and Condensation, J. Compos. Mater., 2002, 36(24), p 2713–2733 B.G. Kumar, P.S. Raman, and N. Toshio, Degradation of Carbon Fiber-Reinforced Epoxy Composites by Ultraviolet Radiation and Condensation, J. Compos. Mater., 2002, 36(24), p 2713–2733
18.
go back to reference R.S. Woo, Y. Chen, H. Zhu, J. Li, J.K. Kim, and C.K. Leung, Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure Part I: Photo-Degradation, Compos. Sci. Technol., 2007, 67(15–16), p 3448–3456 R.S. Woo, Y. Chen, H. Zhu, J. Li, J.K. Kim, and C.K. Leung, Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure Part I: Photo-Degradation, Compos. Sci. Technol., 2007, 67(15–16), p 3448–3456
19.
go back to reference R.S. Woo, H. Zhu, C.K. Leung, and J.K. Kim, Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure: Part II, Residual Mechanical Properties, Compos. Sci. Technol., 2008, 68(9), p 2149–2155 R.S. Woo, H. Zhu, C.K. Leung, and J.K. Kim, Environmental Degradation of Epoxy-Organoclay Nanocomposites Due to UV Exposure: Part II, Residual Mechanical Properties, Compos. Sci. Technol., 2008, 68(9), p 2149–2155
20.
go back to reference D.E. Mouzakis, H. Zoga, and C. Galiotis, Accelerated Environmental Ageing Study of Polyester/Glass Fiber Reinforced Composites (GFRPCs), Compos. B Eng., 2008, 39(3), p 467–475 D.E. Mouzakis, H. Zoga, and C. Galiotis, Accelerated Environmental Ageing Study of Polyester/Glass Fiber Reinforced Composites (GFRPCs), Compos. B Eng., 2008, 39(3), p 467–475
21.
go back to reference L. Chang and W. Chow, Accelerated Weathering on Glass Fiber/Epoxy/Organomont-Morillonite Nanocomposites, J. Compos. Mater., 2010, 44(12), p 1421–1434 L. Chang and W. Chow, Accelerated Weathering on Glass Fiber/Epoxy/Organomont-Morillonite Nanocomposites, J. Compos. Mater., 2010, 44(12), p 1421–1434
22.
go back to reference T.C. Nguyen, Y. Bai, X.L. Zhao, and R. Al-Mahaidi, Effects of Ultraviolet Radiation and Associated Elevated Temperature on Mechanical Performance of Steel/CFRP Double Strap Joints, Compos. Struct., 2012, 94(12), p 3563–3573 T.C. Nguyen, Y. Bai, X.L. Zhao, and R. Al-Mahaidi, Effects of Ultraviolet Radiation and Associated Elevated Temperature on Mechanical Performance of Steel/CFRP Double Strap Joints, Compos. Struct., 2012, 94(12), p 3563–3573
23.
go back to reference A. Rios, W.F. de Amorim Junior, E.P. de Moura, A. de Deus, and J.P. de Andrade Feitosa, Effects of Accelerated Aging on Mechanical, Thermal and Morphological Behavior of Polyurethane/Epoxy/Fiberglass Composites, Polym. Testing, 2016, 50, p 152–163 A. Rios, W.F. de Amorim Junior, E.P. de Moura, A. de Deus, and J.P. de Andrade Feitosa, Effects of Accelerated Aging on Mechanical, Thermal and Morphological Behavior of Polyurethane/Epoxy/Fiberglass Composites, Polym. Testing, 2016, 50, p 152–163
24.
go back to reference J. Nicholas, M. Mohamed, G. Dhaliwal, S. Anandan, and K. Chandrashekhara, Effects of Accelerated Environmental Aging on Glass Fiber Reinforced Thermoset Polyurethane Composites, Compos. B Eng., 2016, 94, p 370–378 J. Nicholas, M. Mohamed, G. Dhaliwal, S. Anandan, and K. Chandrashekhara, Effects of Accelerated Environmental Aging on Glass Fiber Reinforced Thermoset Polyurethane Composites, Compos. B Eng., 2016, 94, p 370–378
25.
go back to reference R.M. Bajracharya, A.C. Manalo, W. Karunasena, and K. Lau, Durability Characteristics and Property Prediction of Glass Fibre Reinforced Mixed Plastics Composites, Compos. B Eng., 2017, 116, p 16–29 R.M. Bajracharya, A.C. Manalo, W. Karunasena, and K. Lau, Durability Characteristics and Property Prediction of Glass Fibre Reinforced Mixed Plastics Composites, Compos. B Eng., 2017, 116, p 16–29
26.
go back to reference A.P.C. Barbosa, A.P.P. Fulco, E.S. Guerra, F.K. Arakaki, M. Tosatto, M.C.B. Costa, and D.D. Jose, Accelerated Aging Effects on Carbon Fiber/Epoxy Composites, Compos. B Eng., 2017, 110, p 298–306 A.P.C. Barbosa, A.P.P. Fulco, E.S. Guerra, F.K. Arakaki, M. Tosatto, M.C.B. Costa, and D.D. Jose, Accelerated Aging Effects on Carbon Fiber/Epoxy Composites, Compos. B Eng., 2017, 110, p 298–306
27.
go back to reference C. Atas, Bearing Strength of Pinned Joints in Woven Fabric Composites with Small Weaving Angles, Compos. Struct., 2009, 88(1), p 40–45 C. Atas, Bearing Strength of Pinned Joints in Woven Fabric Composites with Small Weaving Angles, Compos. Struct., 2009, 88(1), p 40–45
28.
go back to reference A. Atas and C. Soutis, Strength Prediction of Bolted Joints in CFRP Composite Laminates Using Cohesive Zone Elements, Compos. B Eng., 2014, 58, p 25–34 A. Atas and C. Soutis, Strength Prediction of Bolted Joints in CFRP Composite Laminates Using Cohesive Zone Elements, Compos. B Eng., 2014, 58, p 25–34
29.
go back to reference V. Mara, R. Haghani, and M. Al-Emrani, Improving the Performance of Bolted Joints in Composite Structures Using Metal Inserts, J. Compos. Mater., 2016, 50(21), p 3001–3018 V. Mara, R. Haghani, and M. Al-Emrani, Improving the Performance of Bolted Joints in Composite Structures Using Metal Inserts, J. Compos. Mater., 2016, 50(21), p 3001–3018
30.
go back to reference I.K. Giannopoulos, D.D. Doroni, K.I. Kourousis, and M. Yasaee, Effects of Bolt Torque Tightening on the Strength and Fatigue Life of Airframe FRP Laminate Bolted Joints, Compos. B Eng., 2017, 125, p 19–26 I.K. Giannopoulos, D.D. Doroni, K.I. Kourousis, and M. Yasaee, Effects of Bolt Torque Tightening on the Strength and Fatigue Life of Airframe FRP Laminate Bolted Joints, Compos. B Eng., 2017, 125, p 19–26
31.
go back to reference K.S. Chani, J. Saini, and H. Bhunia, Effect of Nanoclay and Bolt Preloads on the Strength of Bolted Joints in Glass Epoxy Nanocomposites, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(4), p 184 K.S. Chani, J. Saini, and H. Bhunia, Effect of Nanoclay and Bolt Preloads on the Strength of Bolted Joints in Glass Epoxy Nanocomposites, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(4), p 184
32.
go back to reference U. Khashaba, T. Sebaey, and A. Selmy, Experimental Verification of a Progressive Damage Model for Composite Pinned-Joints with Different Clearances, Int. J. Mech. Sci., 2019, 152, p 481–491 U. Khashaba, T. Sebaey, and A. Selmy, Experimental Verification of a Progressive Damage Model for Composite Pinned-Joints with Different Clearances, Int. J. Mech. Sci., 2019, 152, p 481–491
33.
go back to reference M. Kumar, J. Saini, and H. Bhunia, Investigations on the Strength of Mechanical Joints Prepared from Carbon Fiber Laminates with Addition of Carbon Nanotubes, J. Mech. Sci. Technol., 2020, 34(3), p 1–12 M. Kumar, J. Saini, and H. Bhunia, Investigations on the Strength of Mechanical Joints Prepared from Carbon Fiber Laminates with Addition of Carbon Nanotubes, J. Mech. Sci. Technol., 2020, 34(3), p 1–12
34.
go back to reference D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray, Mechanical Performance of CNT-Filled Glass Fiber/Epoxy Composite in In-Situ Elevated Temperature Environments Emphasizing the Role of CNT Content, Compos. A Appl. Sci. Manufact., 2016, 84, p 364–376 D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray, Mechanical Performance of CNT-Filled Glass Fiber/Epoxy Composite in In-Situ Elevated Temperature Environments Emphasizing the Role of CNT Content, Compos. A Appl. Sci. Manufact., 2016, 84, p 364–376
35.
go back to reference A. Stewart and E.P. Douglas, Accelerated Testing of Epoxy-FRP Composites for Civil Infrastructure Applications: Property Changes and Mechanisms of Degradation, Polym. Rev., 2012, 52(2), p 115–141 A. Stewart and E.P. Douglas, Accelerated Testing of Epoxy-FRP Composites for Civil Infrastructure Applications: Property Changes and Mechanisms of Degradation, Polym. Rev., 2012, 52(2), p 115–141
36.
go back to reference A. Kumar, S. Commereuc, and V. Verney, Ageing of Elastomers: A Molecular Approach Based on Rheological Characterization, Polym. Degrad. Stabil., 2004, 85(2), p 751–757 A. Kumar, S. Commereuc, and V. Verney, Ageing of Elastomers: A Molecular Approach Based on Rheological Characterization, Polym. Degrad. Stabil., 2004, 85(2), p 751–757
37.
go back to reference B.P. Jelle and T.N. Nilsen, Comparison of Accelerated Climate Ageing Methods of Polymer Building Materials by Attenuated Total Reflectance Fourier Transform Infrared Radiation Spectroscopy, Construct. Build. Mater., 2011, 25(4), p 2122–2132 B.P. Jelle and T.N. Nilsen, Comparison of Accelerated Climate Ageing Methods of Polymer Building Materials by Attenuated Total Reflectance Fourier Transform Infrared Radiation Spectroscopy, Construct. Build. Mater., 2011, 25(4), p 2122–2132
38.
go back to reference N.L. Batista, M.C.M. de Faria, K. Iha, P.C. de Oliveira, and E.C. Botelho, Influence of Water Immersion and Ultraviolet Weathering on Mechanical and Viscoelastic Properties of Polyphenylene Sulfide-Carbon Fiber Composites, J. Thermoplast. Compos. Mater., 2015, 28(3), p 340–356 N.L. Batista, M.C.M. de Faria, K. Iha, P.C. de Oliveira, and E.C. Botelho, Influence of Water Immersion and Ultraviolet Weathering on Mechanical and Viscoelastic Properties of Polyphenylene Sulfide-Carbon Fiber Composites, J. Thermoplast. Compos. Mater., 2015, 28(3), p 340–356
39.
go back to reference F. Awaja, B.M. Jin, G. Michael, Z. Shengnan, G.K. Chun, and J.P. Paul, Surface Molecular Degradation of Selected High-Performance Polymer Composites Under Low Earth Orbit Environmental Conditions, Polym. Degrad. Stab., 2011, 96(7), p 1301–1309 F. Awaja, B.M. Jin, G. Michael, Z. Shengnan, G.K. Chun, and J.P. Paul, Surface Molecular Degradation of Selected High-Performance Polymer Composites Under Low Earth Orbit Environmental Conditions, Polym. Degrad. Stab., 2011, 96(7), p 1301–1309
40.
go back to reference N.L. Hancox, Thermal Effects on Polymer Matrix Composites: Part 1 Thermal Cycling, Mater. Des., 1998, 19(3), p 85–91 N.L. Hancox, Thermal Effects on Polymer Matrix Composites: Part 1 Thermal Cycling, Mater. Des., 1998, 19(3), p 85–91
41.
go back to reference T. Shimokawa, H. Katoh, Y. Hamaguchi, S. Sanbongi, H. Mizuno, H. Nakamura, and H. Tamura, Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures, J. Compos. Mater., 2002, 36(7), p 885–895 T. Shimokawa, H. Katoh, Y. Hamaguchi, S. Sanbongi, H. Mizuno, H. Nakamura, and H. Tamura, Effect of Thermal Cycling on Microcracking and Strength Degradation of High-Temperature Polymer Composite Materials for Use in Next-Generation SST Structures, J. Compos. Mater., 2002, 36(7), p 885–895
42.
go back to reference Y.F. Niu, Y. Yang, S. Gao, and J.W. Yao, Mechanical Mapping of the Interphase in Carbon Fiber Reinforced Poly (ether-ether-ketone) Composites Using Peak Force Atomic Force Microscopy: Interphase Shrinkage under Coupled Ultraviolet and Hydro-Thermal Exposure, Polym. Test., 2016, 55(1), p 257–260 Y.F. Niu, Y. Yang, S. Gao, and J.W. Yao, Mechanical Mapping of the Interphase in Carbon Fiber Reinforced Poly (ether-ether-ketone) Composites Using Peak Force Atomic Force Microscopy: Interphase Shrinkage under Coupled Ultraviolet and Hydro-Thermal Exposure, Polym. Test., 2016, 55(1), p 257–260
43.
go back to reference H.S. Wang, C.L. Hung, and F.K. Chang, Bearing Failure of Bolted Composite Joints Part I: Experimental Characterization, J. Compos. Mater., 1996, 30(12), p 1284–1313 H.S. Wang, C.L. Hung, and F.K. Chang, Bearing Failure of Bolted Composite Joints Part I: Experimental Characterization, J. Compos. Mater., 1996, 30(12), p 1284–1313
Metadata
Title
Performance of Mechanical Joints Prepared from Carbon-Fiber-Reinforced Polymer Nanocomposites under Accelerated Environmental Aging
Authors
Mohit Kumar
J. S. Saini
H. Bhunia
Publication date
28-10-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05216-8

Other articles of this Issue 11/2020

Journal of Materials Engineering and Performance 11/2020 Go to the issue

Premium Partners