Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 23/2020

04-11-2020 | Review

Performance of OLED under mechanical strain: a review

Authors: Nan Sun, Chengming Jiang, Qikun Li, Dongchen Tan, Sheng Bi, Jinhui Song

Published in: Journal of Materials Science: Materials in Electronics | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

OLEDs with convenient portability, low power consumption, and mechanical flexibility have successfully demonstrated their wide range of applications in display, lighting, and medical devices. With the biological requirement and continuous development of electronic technology, the OLEDs have opened up new possibilities for wearable electronic devices. Plentiful reports have revealed the progress of OLED devices with excellent performance of mechanical strain, involving flexible electrodes, processing technology, and advanced fabrication. In this review, the OLED processing methods are systematically discussed, and the development of flexible electrodes has been focused in terms of mechanical strain. In addition, the OLED performance with flexible electrodes also is described. The review provides a comprehensive understanding of OLEDs that can withstand the mechanical strain and achieve commercial maturity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987) C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)
2.
go back to reference G. Gustafsson, Y. Cao, G.M. Treacy et al., Flexible light-emitting-diodes made from soluble conducting polymers. Nature 357(6378), 477–479 (1992) G. Gustafsson, Y. Cao, G.M. Treacy et al., Flexible light-emitting-diodes made from soluble conducting polymers. Nature 357(6378), 477–479 (1992)
3.
go back to reference J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science 267(5202), 1332–1334 (1995) J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science 267(5202), 1332–1334 (1995)
4.
go back to reference S. Tokito. Flexible OLED displays using high-efficiency phosphorescent materials, USA, Research-Areas = Optics; Instruments & Instrumentation; Engineering (provided by Clarivate Analytics) (2005) S. Tokito. Flexible OLED displays using high-efficiency phosphorescent materials, USA, Research-Areas = Optics; Instruments & Instrumentation; Engineering (provided by Clarivate Analytics) (2005)
5.
go back to reference Q. Zhang, B. Li, S. Huang et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8(4), 326–332 (2014) Q. Zhang, B. Li, S. Huang et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 8(4), 326–332 (2014)
6.
go back to reference O.E. Kwon, J. Shin, H. Oh et al., A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Display 21(1), 1–8 (2019) O.E. Kwon, J. Shin, H. Oh et al., A prototype active-matrix OLED using graphene anode for flexible display application. J. Inf. Display 21(1), 1–8 (2019)
7.
go back to reference D. Zhao, W. Huang, L. Dong, et al. 5.5 inch full screen flexible high-resolution OLED display fabricated by ink jet printing method. In: SID Symposium Digest of Technical Papers, 2019, vol. 50, pp. 945–948 D. Zhao, W. Huang, L. Dong, et al. 5.5 inch full screen flexible high-resolution OLED display fabricated by ink jet printing method. In: SID Symposium Digest of Technical Papers, 2019, vol. 50, pp. 945–948
8.
go back to reference C. Vega-Colado, B. Arredondo, J. Torres et al., An all-organic flexible visible light communication system. Sensors 18(9), 3045 (2018) C. Vega-Colado, B. Arredondo, J. Torres et al., An all-organic flexible visible light communication system. Sensors 18(9), 3045 (2018)
9.
go back to reference W. Li, Y.Q. Li, Y. Shen et al., Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Opt. Mater. 7(21), 1900985 (2019) W. Li, Y.Q. Li, Y. Shen et al., Releasing the trapped light for efficient silver nanowires-based white flexible organic light-emitting diodes. Adv. Opt. Mater. 7(21), 1900985 (2019)
10.
go back to reference J.T. Smith, B.A. Katchman, D.E. Kullman et al., Application of Flexible OLED display technology to point-of-care medical diagnostic testing. J. Display Technol. 12(3), 273–280 (2016) J.T. Smith, B.A. Katchman, D.E. Kullman et al., Application of Flexible OLED display technology to point-of-care medical diagnostic testing. J. Display Technol. 12(3), 273–280 (2016)
11.
go back to reference Y. Khan, D. Han, A. Pierre et al., A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. 115(47), E11015–E11024 (2018) Y. Khan, D. Han, A. Pierre et al., A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. 115(47), E11015–E11024 (2018)
12.
go back to reference C. Adachi, S. Tokito, T. Tsutsui et al., Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys. 27(2), L269–L271 (1988) C. Adachi, S. Tokito, T. Tsutsui et al., Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys. 27(2), L269–L271 (1988)
13.
go back to reference R.Q. Ma, R. Hewitt, K. Rajan et al., Flexible active-matrix OLED displays: challenges and progress. J. Soc. Inf. Display 16(1), 169–175 (2008) R.Q. Ma, R. Hewitt, K. Rajan et al., Flexible active-matrix OLED displays: challenges and progress. J. Soc. Inf. Display 16(1), 169–175 (2008)
14.
go back to reference O. Prache, Active matrix molecular OLED microdisplays. Displays 22(2), 49–56 (2001) O. Prache, Active matrix molecular OLED microdisplays. Displays 22(2), 49–56 (2001)
15.
go back to reference X. Zhou, M. Pfeiffer, J.S. Huang et al., Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Appl. Phys. Lett. 81(5), 922–924 (2002) X. Zhou, M. Pfeiffer, J.S. Huang et al., Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Appl. Phys. Lett. 81(5), 922–924 (2002)
16.
go back to reference Q. Li, S. Bi, K. Asare-Yeboah et al., High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 13(7), 8425–8432 (2019) Q. Li, S. Bi, K. Asare-Yeboah et al., High performance vertical resonant photo-effect-transistor with an all-around OLED-gate for ultra-electromagnetic stability. ACS Nano 13(7), 8425–8432 (2019)
17.
go back to reference S. Bi, Q. Li, Z. He et al., Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019) S. Bi, Q. Li, Z. He et al., Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate and nanowire array channel. Nano Energy 66, 104101 (2019)
18.
go back to reference S. Li, S. Wu, Y. Wang et al., Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. J. Mater. Chem. C 6(2), 342–349 (2018) S. Li, S. Wu, Y. Wang et al., Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. J. Mater. Chem. C 6(2), 342–349 (2018)
19.
go back to reference K. Asare-Yeboah, Q. Li, C. Jiang et al., High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11(16), 6526–6534 (2020) K. Asare-Yeboah, Q. Li, C. Jiang et al., High performance and efficiency resonant photo-effect-transistor by near-field nano-strip-controlled organic light emitting diode gate. J. Phys. Chem. Lett. 11(16), 6526–6534 (2020)
20.
go back to reference S. Bi, Q. Li, K. Asare-Yeboah et al., Ultra-high-responsivity vertical nanowire-based phototransistor under standing-wave plasmon mode interaction induced by near-field circular OLED. J. Phys. Chem. Lett. 11(10), 3947–3954 (2020) S. Bi, Q. Li, K. Asare-Yeboah et al., Ultra-high-responsivity vertical nanowire-based phototransistor under standing-wave plasmon mode interaction induced by near-field circular OLED. J. Phys. Chem. Lett. 11(10), 3947–3954 (2020)
21.
go back to reference S. Kwon, E. Lee, K. Kim et al., Efficient micro-cavity top emission OLED with optimized Mg: Ag ratio cathode. Opt. Express 25(24), 29906 (2017) S. Kwon, E. Lee, K. Kim et al., Efficient micro-cavity top emission OLED with optimized Mg: Ag ratio cathode. Opt. Express 25(24), 29906 (2017)
22.
go back to reference S. Jeong, S. Jung, H. Kang et al., Controlling the chromaticity of white organic light-emitting diodes using a microcavity architecture. Adv. Opt. Mater. 8(1), 1901365 (2020) S. Jeong, S. Jung, H. Kang et al., Controlling the chromaticity of white organic light-emitting diodes using a microcavity architecture. Adv. Opt. Mater. 8(1), 1901365 (2020)
23.
go back to reference C. Tang, C. Jiang, S. Bi et al., Photoelectric property modulation by nanoconfinement in the longitude direction of short semiconducting nanorods. ACS Appl. Mater. Interfaces 8(17), 11001–11007 (2016) C. Tang, C. Jiang, S. Bi et al., Photoelectric property modulation by nanoconfinement in the longitude direction of short semiconducting nanorods. ACS Appl. Mater. Interfaces 8(17), 11001–11007 (2016)
24.
go back to reference J. Na, S. Bi, C. Jiang et al., Achieving the hypsochromic electroluminescence of ultraviolet OLED by tuning excitons relaxation. Org. Electron. 82, 105718 (2020) J. Na, S. Bi, C. Jiang et al., Achieving the hypsochromic electroluminescence of ultraviolet OLED by tuning excitons relaxation. Org. Electron. 82, 105718 (2020)
25.
go back to reference M.A. Baldo, D.F. O’Brien, M.E. Thompson et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999) M.A. Baldo, D.F. O’Brien, M.E. Thompson et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)
26.
go back to reference M.A. Baldo, D.F. O’Brien, Y. You et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998) M.A. Baldo, D.F. O’Brien, Y. You et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)
27.
go back to reference H. Sasabe, J. Kido, Recent progress in phosphorescent organic light-emitting devices. Eur. J. Org. Chem. 2013(34), 7653–7663 (2013) H. Sasabe, J. Kido, Recent progress in phosphorescent organic light-emitting devices. Eur. J. Org. Chem. 2013(34), 7653–7663 (2013)
29.
go back to reference W. Chen, C. Lee, Q. Tong, Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3(42), 10957–10963 (2015) W. Chen, C. Lee, Q. Tong, Blue-emitting organic electrofluorescence materials: progress and prospective. J. Mater. Chem. C 3(42), 10957–10963 (2015)
30.
go back to reference Y. Im, S.Y. Byun, J.H. Kim et al., Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv. Funct. Mater. 27(13), 1603007 (2017) Y. Im, S.Y. Byun, J.H. Kim et al., Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes. Adv. Funct. Mater. 27(13), 1603007 (2017)
31.
go back to reference L. Yao, B. Yang, Y. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. Chin. Chem. 57(3), 335–345 (2014) L. Yao, B. Yang, Y. Ma, Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. Chin. Chem. 57(3), 335–345 (2014)
32.
go back to reference T. Nakagawa, S. Ku, K. Wong et al., Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 48(77), 9580–9582 (2012) T. Nakagawa, S. Ku, K. Wong et al., Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 48(77), 9580–9582 (2012)
33.
go back to reference A. Endo, K. Sato, K. Yoshimura et al., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98(8), 83302 (2011) A. Endo, K. Sato, K. Yoshimura et al., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98(8), 83302 (2011)
34.
go back to reference H. Uoyama, K. Goushi, K. Shizu et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012) H. Uoyama, K. Goushi, K. Shizu et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428), 234–238 (2012)
35.
go back to reference T. Huang, W. Jiang, L. Duan, Recent progress in solution processable TADF materials for organic light-emitting diodes. J. Mater. Chem. C 6(21), 5577–5596 (2018) T. Huang, W. Jiang, L. Duan, Recent progress in solution processable TADF materials for organic light-emitting diodes. J. Mater. Chem. C 6(21), 5577–5596 (2018)
36.
go back to reference S. Kim, H. Kwon, S. Lee et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(31), 3511–3516 (2011) S. Kim, H. Kwon, S. Lee et al., Low-power flexible organic light-emitting diode display device. Adv. Mater. 23(31), 3511–3516 (2011)
37.
go back to reference M.A. McCarthy, B. Liu, E.P. Donoghue et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011) M.A. McCarthy, B. Liu, E.P. Donoghue et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332(6029), 570–573 (2011)
38.
go back to reference S. Wang, J. Yang, T. Xu et al., Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode. Org. Electron. 64, 146–153 (2019) S. Wang, J. Yang, T. Xu et al., Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode. Org. Electron. 64, 146–153 (2019)
39.
go back to reference H. Sim, C. Kim, S. Bok et al., Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes. Nanoscale 10(25), 12087–12092 (2018) H. Sim, C. Kim, S. Bok et al., Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes. Nanoscale 10(25), 12087–12092 (2018)
40.
go back to reference J. Hast, M. Tuomikoski, R. Suhonen, et al. 18.1: invited paper: roll‐to‐roll manufacturing of printed OLEDs. In: SID Symposium Digest of Technical Papers, 2013, vol. 44(1), pp. 192–195 J. Hast, M. Tuomikoski, R. Suhonen, et al. 18.1: invited paper: roll‐to‐roll manufacturing of printed OLEDs. In: SID Symposium Digest of Technical Papers, 2013, vol. 44(1), pp. 192–195
41.
go back to reference V. Bulović, P. Tian, P.E. Burrows et al., A surface-emitting vacuum-deposited organic light emitting device. Appl. Phys. Lett. 70(22), 2954 (1997) V. Bulović, P. Tian, P.E. Burrows et al., A surface-emitting vacuum-deposited organic light emitting device. Appl. Phys. Lett. 70(22), 2954 (1997)
42.
go back to reference E. Lee, Simulation of the thin-film thickness distribution for an OLED thermal evaporation process. Vacuum 83(5), 848–852 (2009) E. Lee, Simulation of the thin-film thickness distribution for an OLED thermal evaporation process. Vacuum 83(5), 848–852 (2009)
43.
go back to reference S. Kim, M. Lee, K. Woo et al., A study on thin film uniformity in a roll-to-roll thermal evaporation system for flexible OLED applications. Int. J. Precis. Eng. Manuf. 18(8), 1111–1117 (2017) S. Kim, M. Lee, K. Woo et al., A study on thin film uniformity in a roll-to-roll thermal evaporation system for flexible OLED applications. Int. J. Precis. Eng. Manuf. 18(8), 1111–1117 (2017)
44.
go back to reference G. Gu, P.E. Burrows, S. Venkatesh et al., Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt. Lett. 22(3), 172–174 (1997) G. Gu, P.E. Burrows, S. Venkatesh et al., Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt. Lett. 22(3), 172–174 (1997)
45.
go back to reference M.A. Baldo, V.G. Kozlov, P.E. Burrows et al., Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures. Appl. Phys. Lett. 71(21), 3033–3035 (1997) M.A. Baldo, V.G. Kozlov, P.E. Burrows et al., Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures. Appl. Phys. Lett. 71(21), 3033–3035 (1997)
46.
go back to reference B. Wang, Z. Wang, J. Liang et al., Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. J. Mater. Chem. C 5(41), 10721–10727 (2017) B. Wang, Z. Wang, J. Liang et al., Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. J. Mater. Chem. C 5(41), 10721–10727 (2017)
47.
go back to reference J. Wu, M. Agrawal, H.A. Becerril et al., Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2009) J. Wu, M. Agrawal, H.A. Becerril et al., Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2009)
49.
go back to reference D. Wang, J. Hauptmann, C. May, OLED manufacturing on flexible substrates towards roll-to-roll. MRS Adv. 4(24), 1367–1375 (2019) D. Wang, J. Hauptmann, C. May, OLED manufacturing on flexible substrates towards roll-to-roll. MRS Adv. 4(24), 1367–1375 (2019)
50.
go back to reference R. Abbel, I. de Vries, A. Langen et al., Toward high volume solution based roll-to-roll processing of OLEDs. J. Mater. Res. 32(12), 2219–2229 (2017) R. Abbel, I. de Vries, A. Langen et al., Toward high volume solution based roll-to-roll processing of OLEDs. J. Mater. Res. 32(12), 2219–2229 (2017)
51.
go back to reference S.J. Lee, Y. Kim, J.K. Kim et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014) S.J. Lee, Y. Kim, J.K. Kim et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014)
52.
go back to reference D.H. Lee, J.S. Choi, H. Chae et al., Highly efficient phosphorescent polymer OLEDs fabricated by screen printing. Displays 29(5), 436–439 (2008) D.H. Lee, J.S. Choi, H. Chae et al., Highly efficient phosphorescent polymer OLEDs fabricated by screen printing. Displays 29(5), 436–439 (2008)
53.
go back to reference K. Mori, T.L. Ning, M. Ichikawa et al., Organic light-emitting devices patterned by screen-printing. Jpn. J. Appl. Phys. Lett. 39(9AB), L942–L944 (2000) K. Mori, T.L. Ning, M. Ichikawa et al., Organic light-emitting devices patterned by screen-printing. Jpn. J. Appl. Phys. Lett. 39(9AB), L942–L944 (2000)
54.
go back to reference T. Lee, Y. Choi, S. Nam et al., Color filter patterned by screen printing. Thin Solid Films 516(21), 7875–7880 (2008) T. Lee, Y. Choi, S. Nam et al., Color filter patterned by screen printing. Thin Solid Films 516(21), 7875–7880 (2008)
55.
go back to reference S.C. Chang, J. Liu, J. Bharathan et al., Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Adv. Mater. 11(9), 734–737 (1999) S.C. Chang, J. Liu, J. Bharathan et al., Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Adv. Mater. 11(9), 734–737 (1999)
56.
go back to reference J. Li, F. Ye, S. Vaziri et al., Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013) J. Li, F. Ye, S. Vaziri et al., Efficient inkjet printing of graphene. Adv. Mater. 25(29), 3985–3992 (2013)
57.
go back to reference Y. Gao, W. Shi, W. Wang et al., Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53(43), 16777–16784 (2014) Y. Gao, W. Shi, W. Wang et al., Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53(43), 16777–16784 (2014)
58.
go back to reference B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004) B.J. de Gans, P.C. Duineveld, U.S. Schubert, Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)
59.
go back to reference E.B. Secor, S. Lim, H. Zhang et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014) E.B. Secor, S. Lim, H. Zhang et al., Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)
60.
go back to reference J. Seong, S. Kim, J. Park et al., Online noncontact thickness measurement of printed conductive silver patterns in Roll-to-Roll gravure printing. Int. J. Precis. Eng. Manuf. 16(11), 2265–2270 (2015) J. Seong, S. Kim, J. Park et al., Online noncontact thickness measurement of printed conductive silver patterns in Roll-to-Roll gravure printing. Int. J. Precis. Eng. Manuf. 16(11), 2265–2270 (2015)
61.
go back to reference C. Cho, W. Hwang, K. Eun et al., Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95(12), 3269–3275 (2011) C. Cho, W. Hwang, K. Eun et al., Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95(12), 3269–3275 (2011)
62.
go back to reference K. Choi, J. Lee, J. Park et al., Multilayer slot-die coating of large-area organic light-emitting diodes. Org. Electron. 26, 66–74 (2015) K. Choi, J. Lee, J. Park et al., Multilayer slot-die coating of large-area organic light-emitting diodes. Org. Electron. 26, 66–74 (2015)
63.
go back to reference K. Choi, J. Lee, D. Shin et al., Investigation on slot-die coating of hybrid material structure for OLED lightings. J. Phys. Chem. Solids 95, 119–128 (2016) K. Choi, J. Lee, D. Shin et al., Investigation on slot-die coating of hybrid material structure for OLED lightings. J. Phys. Chem. Solids 95, 119–128 (2016)
64.
go back to reference D. Kim, H. Shin, E. Ko, et al. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels. Sci. Rep. 6(1), (2016) D. Kim, H. Shin, E. Ko, et al. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels. Sci. Rep. 6(1), (2016)
65.
go back to reference J.Y. Seok, M. Yang, A novel blade-jet coating method for achieving ultrathin, uniform film toward all-solution-processed large-area organic light-emitting diodes. Adv Mater. Technol. 1(3), 1600029 (2016) J.Y. Seok, M. Yang, A novel blade-jet coating method for achieving ultrathin, uniform film toward all-solution-processed large-area organic light-emitting diodes. Adv Mater. Technol. 1(3), 1600029 (2016)
66.
go back to reference K. An, J.B. Kim, D.G. Yoon et al., High speed nozzle jet printing for bendable organic light emitting diodes. Flex. Print. Electron. 4(1), 15009 (2019) K. An, J.B. Kim, D.G. Yoon et al., High speed nozzle jet printing for bendable organic light emitting diodes. Flex. Print. Electron. 4(1), 15009 (2019)
67.
go back to reference Z. Qin, Q. Wang, C. Wang et al., Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-step energy transfer. J. Mater. Chem. C 7(4), 1065–1071 (2019) Z. Qin, Q. Wang, C. Wang et al., Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-step energy transfer. J. Mater. Chem. C 7(4), 1065–1071 (2019)
69.
go back to reference D. Cho, O.E. Kwon, Y. Park et al., Flexible integrated OLED substrates prepared by printing and plating process. Org. Electron. 50, 170–176 (2017) D. Cho, O.E. Kwon, Y. Park et al., Flexible integrated OLED substrates prepared by printing and plating process. Org. Electron. 50, 170–176 (2017)
70.
go back to reference Y. Tsai, A. Chittawanij, L. Hong et al., Multi-solution processes of small molecule for flexible white organic light-emitting diodes. Thin Solid Films 604, 94–101 (2016) Y. Tsai, A. Chittawanij, L. Hong et al., Multi-solution processes of small molecule for flexible white organic light-emitting diodes. Thin Solid Films 604, 94–101 (2016)
71.
go back to reference W. Zhao, I.I. Nugay, B. Yalcin et al., Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: in-plane anisotropic conductivity for electro-optical applications. Displays 45, 48–57 (2016) W. Zhao, I.I. Nugay, B. Yalcin et al., Flexible, stretchable, transparent and electrically conductive polymer films via a hybrid electrospinning and solution casting process: in-plane anisotropic conductivity for electro-optical applications. Displays 45, 48–57 (2016)
73.
go back to reference J. Eccher, W. Zajaczkowski, G.C. Faria et al., Thermal evaporation versus spin-coating: electrical performance in columnar liquid crystal OLEDs. ACS Appl. Mater. Interfaces. 7(30), 16374–16381 (2015) J. Eccher, W. Zajaczkowski, G.C. Faria et al., Thermal evaporation versus spin-coating: electrical performance in columnar liquid crystal OLEDs. ACS Appl. Mater. Interfaces. 7(30), 16374–16381 (2015)
74.
go back to reference K. Tong, X. Liu, F. Zhao et al., Efficient light extraction of organic light-emitting diodes on a fully solution-processed flexible substrate. Adv. Opt. Mater. 5(18), 1700307 (2017) K. Tong, X. Liu, F. Zhao et al., Efficient light extraction of organic light-emitting diodes on a fully solution-processed flexible substrate. Adv. Opt. Mater. 5(18), 1700307 (2017)
75.
go back to reference A. Sugimoto, H. Ochi, S. Fujimura et al., Flexible OLED displays using plastic substrates. IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004) A. Sugimoto, H. Ochi, S. Fujimura et al., Flexible OLED displays using plastic substrates. IEEE J. Sel. Top. Quantum Electron. 10(1), 107–114 (2004)
76.
go back to reference B.J. May, A.T.M.G. Sarwar, R.C. Myers, Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 108(14), 141103 (2016) B.J. May, A.T.M.G. Sarwar, R.C. Myers, Nanowire LEDs grown directly on flexible metal foil. Appl. Phys. Lett. 108(14), 141103 (2016)
77.
go back to reference K. Hong, H.K. Yu, I. Lee et al., Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Adv. 8(46), 26156–26160 (2018) K. Hong, H.K. Yu, I. Lee et al., Flexible top-emitting organic light emitting diodes with a functional dielectric reflector on a metal foil substrate. RSC Adv. 8(46), 26156–26160 (2018)
78.
go back to reference J.H. Cheon, J.H. Choi, J.H. Hur et al., Active-matrix OLED on bendable metal foil. IEEE Trans. Electron Devices 53(5), 1273–1276 (2006) J.H. Cheon, J.H. Choi, J.H. Hur et al., Active-matrix OLED on bendable metal foil. IEEE Trans. Electron Devices 53(5), 1273–1276 (2006)
79.
go back to reference S. Garner, D. Chowdhury, S. Lewis, Ultrathin glass substrates for thin, lightweight, flexible OLED lighting. Inf. Display 35, 9–12 (2019) S. Garner, D. Chowdhury, S. Lewis, Ultrathin glass substrates for thin, lightweight, flexible OLED lighting. Inf. Display 35, 9–12 (2019)
80.
go back to reference Y. Sung, R.E. Malay, X. Wen et al., Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Appl. Opt. 57(9), 2202 (2018) Y. Sung, R.E. Malay, X. Wen et al., Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Appl. Opt. 57(9), 2202 (2018)
81.
go back to reference N. Formica, P. Mantilla-Perez, D.S. Ghosh et al., An indium tin oxide-free polymer solar cell on flexible glass. ACS Appl. Mater. Interfaces. 7(8), 4541–4548 (2015) N. Formica, P. Mantilla-Perez, D.S. Ghosh et al., An indium tin oxide-free polymer solar cell on flexible glass. ACS Appl. Mater. Interfaces. 7(8), 4541–4548 (2015)
82.
go back to reference R.E. Triambulo, J. Park, Heat evolution and dissipation in organic light-emitting diodes on flexible polymer substrates. Org. Electron. 28, 123–134 (2016) R.E. Triambulo, J. Park, Heat evolution and dissipation in organic light-emitting diodes on flexible polymer substrates. Org. Electron. 28, 123–134 (2016)
83.
go back to reference H. Xu, D. Luo, M. Li et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2(7), 1255–1259 (2014) H. Xu, D. Luo, M. Li et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2(7), 1255–1259 (2014)
84.
go back to reference X. Huang, F. Zhang, Y. Liu et al., Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature. Smart Mater. Struct. 28(5), 55031 (2019) X. Huang, F. Zhang, Y. Liu et al., Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature. Smart Mater. Struct. 28(5), 55031 (2019)
85.
go back to reference Y. Lim, O.E. Kwon, S. Kang et al., Built-in haze glass-fabric reinforced siloxane hybrid film for efficient organic light-emitting diodes (OLEDs). Adv. Funct. Mater. 28(33), 1802944 (2018) Y. Lim, O.E. Kwon, S. Kang et al., Built-in haze glass-fabric reinforced siloxane hybrid film for efficient organic light-emitting diodes (OLEDs). Adv. Funct. Mater. 28(33), 1802944 (2018)
86.
go back to reference Y. Liu, M. An, Y. Bi et al., Flexible efficient top-emitting organic light-emitting devices on a silk substrate. IEEE Photon. J. 9(5), 1–6 (2017) Y. Liu, M. An, Y. Bi et al., Flexible efficient top-emitting organic light-emitting devices on a silk substrate. IEEE Photon. J. 9(5), 1–6 (2017)
87.
go back to reference J. Tao, R. Wang, H. Yu et al., Highly Transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices. ACS Appl. Mater. Interfaces 12(8), 9701–9709 (2020) J. Tao, R. Wang, H. Yu et al., Highly Transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices. ACS Appl. Mater. Interfaces 12(8), 9701–9709 (2020)
88.
go back to reference X. Song, S. Yang, X. Liu et al., Transparent and water-resistant composites prepared from acrylic resins ABPE-10 and acetylated nanofibrillated cellulose as flexible organic light-emitting device substrate. Nanomaterials 8(9), 648 (2018) X. Song, S. Yang, X. Liu et al., Transparent and water-resistant composites prepared from acrylic resins ABPE-10 and acetylated nanofibrillated cellulose as flexible organic light-emitting device substrate. Nanomaterials 8(9), 648 (2018)
89.
go back to reference Y. Yao, J. Tao, J. Zou et al., Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016) Y. Yao, J. Tao, J. Zou et al., Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9(7), 2278–2285 (2016)
90.
go back to reference P. Lennie, J. Pokorny, V.C. Smith, Luminance. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10(6), 1283–1293 (1993) P. Lennie, J. Pokorny, V.C. Smith, Luminance. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 10(6), 1283–1293 (1993)
91.
go back to reference X. Wang, A. Grimoldi, K. Håkansson et al., Anisotropic conductivity of cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Org. Electron. 66, 258–264 (2019) X. Wang, A. Grimoldi, K. Håkansson et al., Anisotropic conductivity of cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool. Org. Electron. 66, 258–264 (2019)
92.
go back to reference L. Kinner, E.J.W. List-Kratochvil, T. Dimopoulos, Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates. Nanotechnology 31(36), 365303 (2020) L. Kinner, E.J.W. List-Kratochvil, T. Dimopoulos, Gentle plasma process for embedded silver-nanowire flexible transparent electrodes on temperature-sensitive polymer substrates. Nanotechnology 31(36), 365303 (2020)
93.
go back to reference S. Zhang, Z. Gao, W. Wang et al., A natural biopolymer film as a robust protective layer to effectively stabilize lithium-metal anodes. Small 14(31), 1801054 (2018) S. Zhang, Z. Gao, W. Wang et al., A natural biopolymer film as a robust protective layer to effectively stabilize lithium-metal anodes. Small 14(31), 1801054 (2018)
94.
go back to reference C. Hsu, Y. Lin, H. Wu et al., Deposition of silicon-based stacked layers for flexible encapsulation of organic light emitting diodes. Nanomaterials 9(7), 1053 (2019) C. Hsu, Y. Lin, H. Wu et al., Deposition of silicon-based stacked layers for flexible encapsulation of organic light emitting diodes. Nanomaterials 9(7), 1053 (2019)
95.
go back to reference L. Lee, K.H. Yoon, J.W. Jung et al., Ultra gas-proof polymer hybrid thin layer. Nano Lett. 18(9), 5461–5466 (2018) L. Lee, K.H. Yoon, J.W. Jung et al., Ultra gas-proof polymer hybrid thin layer. Nano Lett. 18(9), 5461–5466 (2018)
96.
go back to reference T. Nam, Y.J. Park, H. Lee et al., A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116, 553–561 (2017) T. Nam, Y.J. Park, H. Lee et al., A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 116, 553–561 (2017)
97.
go back to reference M.G. Helander, Z.B. Wang, J. Qiu et al., Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332(6032), 944–947 (2011) M.G. Helander, Z.B. Wang, J. Qiu et al., Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332(6032), 944–947 (2011)
98.
go back to reference L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31(10), 1806133 (2019) L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 31(10), 1806133 (2019)
99.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007) A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)
100.
go back to reference J. Schneider, P. Rohner, D. Thureja et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26(6), 833–840 (2016) J. Schneider, P. Rohner, D. Thureja et al., Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes. Adv. Funct. Mater. 26(6), 833–840 (2016)
101.
go back to reference S. Ye, A.R. Rathmell, Z. Chen et al., Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26(39), 6670–6687 (2014) S. Ye, A.R. Rathmell, Z. Chen et al., Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26(39), 6670–6687 (2014)
103.
go back to reference H.J. Park, J. Kim, J.H. Won et al., Tin-doped indium oxide films for highly flexible transparent conducting electrodes. Thin Solid Films 615, 8–12 (2016) H.J. Park, J. Kim, J.H. Won et al., Tin-doped indium oxide films for highly flexible transparent conducting electrodes. Thin Solid Films 615, 8–12 (2016)
104.
go back to reference J.Y. Park, H.J. Park, Optoelectric property and flexibility of tin-doped indium oxide (ITO) thin film. J. Nanosci. Nanotechnol. 20(6), 3542–3546 (2020) J.Y. Park, H.J. Park, Optoelectric property and flexibility of tin-doped indium oxide (ITO) thin film. J. Nanosci. Nanotechnol. 20(6), 3542–3546 (2020)
105.
go back to reference D.M. Wirth, L.J. Waldman, M. Petty et al., Communication-polyaniline electrodeposition on flexible ito substrates and the effect of curved electrochemical conditions. J. Electrochem. Soc. 166(13), D635–D637 (2019) D.M. Wirth, L.J. Waldman, M. Petty et al., Communication-polyaniline electrodeposition on flexible ito substrates and the effect of curved electrochemical conditions. J. Electrochem. Soc. 166(13), D635–D637 (2019)
106.
go back to reference H. Wang, S. Liao, X. Bai et al., Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Appl. Mater. Interfaces 8(48), 32661–32666 (2016) H. Wang, S. Liao, X. Bai et al., Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning. ACS Appl. Mater. Interfaces 8(48), 32661–32666 (2016)
107.
go back to reference Y. Li, X. Hu, S. Zhou et al., A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. J. Mater. Chem. C 2(5), 916–924 (2014) Y. Li, X. Hu, S. Zhou et al., A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. J. Mater. Chem. C 2(5), 916–924 (2014)
108.
go back to reference M.S. White, M. Kaltenbrunner, E.D. Głowacki et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7(10), 811–816 (2013) M.S. White, M. Kaltenbrunner, E.D. Głowacki et al., Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7(10), 811–816 (2013)
109.
go back to reference M. Aleksandrova, V. Videkov, R. Ivanova et al., Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices. Mater. Lett. 174, 204–208 (2016) M. Aleksandrova, V. Videkov, R. Ivanova et al., Highly flexible, conductive and transparent PEDOT:PSS/Au/PEDOT:PSS multilayer electrode for optoelectronic devices. Mater. Lett. 174, 204–208 (2016)
110.
go back to reference L. Zhou, M. Yu, X. Chen et al., Screen-printed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater. 28(11), 1705955 (2018) L. Zhou, M. Yu, X. Chen et al., Screen-printed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater. 28(11), 1705955 (2018)
111.
go back to reference M. Ohsawa, N. Hashimoto, Bending reliability of flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer. Microelectron. Reliab. 98, 124–130 (2019) M. Ohsawa, N. Hashimoto, Bending reliability of flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer. Microelectron. Reliab. 98, 124–130 (2019)
113.
go back to reference D. Kim, D. Lee, Y. Lee et al., Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 23(40), 5049–5055 (2013) D. Kim, D. Lee, Y. Lee et al., Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl)amide doping for efficient polymer light-emitting diodes. Adv. Funct. Mater. 23(40), 5049–5055 (2013)
114.
go back to reference H. Shin, W.M. Choi, D. Choi et al., Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 132(44), 15603–15609 (2010) H. Shin, W.M. Choi, D. Choi et al., Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc. 132(44), 15603–15609 (2010)
115.
go back to reference T. Wu, C. Yeh, W. Hsiao et al., High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017) T. Wu, C. Yeh, W. Hsiao et al., High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 9(17), 14998–15004 (2017)
116.
go back to reference S. Jia, H.D. Sun, J.H. Du et al., Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 8(20), 10714–10723 (2016) S. Jia, H.D. Sun, J.H. Du et al., Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale 8(20), 10714–10723 (2016)
117.
go back to reference B. Che, D. Zhou, H. Li et al., A highly bendable transparent electrode for organic electrochromic devices. Org. Electron. 66, 86–93 (2019) B. Che, D. Zhou, H. Li et al., A highly bendable transparent electrode for organic electrochromic devices. Org. Electron. 66, 86–93 (2019)
118.
go back to reference H.D. Yun, J. Kwak, S. Kim et al., High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks. J. Alloys Compd. 675, 37–45 (2016) H.D. Yun, J. Kwak, S. Kim et al., High performance all-carbon composite transparent electrodes containing uniform carbon nanotube networks. J. Alloys Compd. 675, 37–45 (2016)
119.
go back to reference S. Jiang, P.X. Hou, M.L. Chen et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4(5), 9264 (2018) S. Jiang, P.X. Hou, M.L. Chen et al., Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 4(5), 9264 (2018)
120.
go back to reference D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96(4), 41109 (2010) D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96(4), 41109 (2010)
121.
go back to reference M. Kang, M. Kim, J. Kim et al., Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008) M. Kang, M. Kim, J. Kim et al., Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20(23), 4408–4413 (2008)
122.
go back to reference S.K. Bae, D.C. Choo, H.S. Kang et al., Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices. Nano Energy 71, 104649 (2020) S.K. Bae, D.C. Choo, H.S. Kang et al., Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices. Nano Energy 71, 104649 (2020)
123.
go back to reference M. Morales-Masis, F. Dauzou, Q. Jeangros et al., An indium-free anode for large-area flexible OLEDs: defect-free transparent conductive zinc tin oxide. Adv. Funct. Mater. 26(3), 384–392 (2016) M. Morales-Masis, F. Dauzou, Q. Jeangros et al., An indium-free anode for large-area flexible OLEDs: defect-free transparent conductive zinc tin oxide. Adv. Funct. Mater. 26(3), 384–392 (2016)
124.
go back to reference J.H. Kwon, Y. Jeon, K.C. Choi, Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl. Mater. Interfaces 10(38), 32387–32396 (2018) J.H. Kwon, Y. Jeon, K.C. Choi, Robust transparent and conductive gas diffusion multibarrier based on Mg- and Al-doped ZnO as indium tin oxide-free electrodes for organic electronics. ACS Appl. Mater. Interfaces 10(38), 32387–32396 (2018)
125.
go back to reference S. Lee, H. Koo, T. Kim et al., Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes. Surf. Coat. Technol. 343, 115–120 (2018) S. Lee, H. Koo, T. Kim et al., Asymmetric ITO/Ag/ZTO and ZTO/Ag/ITO anodes prepared by roll-to-roll sputtering for flexible organic light-emitting diodes. Surf. Coat. Technol. 343, 115–120 (2018)
126.
go back to reference H.W. Bae, S.K. Kim, S. Lee et al., Thermally evaporated organic/Ag/organic multilayer transparent conducting electrode for flexible organic light-emitting diodes. Adv. Electron. Mater. 5(10), 1900620 (2019) H.W. Bae, S.K. Kim, S. Lee et al., Thermally evaporated organic/Ag/organic multilayer transparent conducting electrode for flexible organic light-emitting diodes. Adv. Electron. Mater. 5(10), 1900620 (2019)
127.
go back to reference D. Kim, Y.C. Han, H.C. Kim et al., Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater. 25(46), 7145–7153 (2015) D. Kim, Y.C. Han, H.C. Kim et al., Highly transparent and flexible organic light-emitting diodes with structure optimized for anode/cathode multilayer electrodes. Adv. Funct. Mater. 25(46), 7145–7153 (2015)
128.
go back to reference H. Cheong, R.E. Triambulo, G. Lee et al., Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. ACS Appl. Mater. Interfaces 6(10), 7846–7855 (2014) H. Cheong, R.E. Triambulo, G. Lee et al., Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. ACS Appl. Mater. Interfaces 6(10), 7846–7855 (2014)
129.
go back to reference T. Ye, L. Jun, L. Kun et al., Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org. Electron. 41, 179–185 (2017) T. Ye, L. Jun, L. Kun et al., Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org. Electron. 41, 179–185 (2017)
130.
go back to reference S. Jun, Y. Kim, B. Ju et al., Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires. Appl. Surf. Sci. 429, 144–150 (2018) S. Jun, Y. Kim, B. Ju et al., Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires. Appl. Surf. Sci. 429, 144–150 (2018)
131.
go back to reference J. Lee, K. An, P. Won et al., A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale 9(5), 1978–1985 (2017) J. Lee, K. An, P. Won et al., A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale 9(5), 1978–1985 (2017)
132.
go back to reference S. Kim, B. Hwang, Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs. Mater. Des. 160, 572–577 (2018) S. Kim, B. Hwang, Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs. Mater. Des. 160, 572–577 (2018)
133.
go back to reference S. Lee, Y. Cho, D. Kim et al., Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Adv. Opt. Mater. 3(9), 1240–1247 (2015) S. Lee, Y. Cho, D. Kim et al., Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Adv. Opt. Mater. 3(9), 1240–1247 (2015)
134.
go back to reference L. Lian, X. Xi, D. Dong et al., Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 60, 9–15 (2018) L. Lian, X. Xi, D. Dong et al., Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 60, 9–15 (2018)
136.
go back to reference B. Wei, X. Wu, L. Lian et al., A highly conductive and smooth AgNW/PEDOT:PSS film treated by hot-pressing as electrode for organic light emitting diode. Org. Electron. 43, 182–188 (2017) B. Wei, X. Wu, L. Lian et al., A highly conductive and smooth AgNW/PEDOT:PSS film treated by hot-pressing as electrode for organic light emitting diode. Org. Electron. 43, 182–188 (2017)
137.
go back to reference K. Ok, J. Kim, S. Park et al., Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5, 9464 (2015) K. Ok, J. Kim, S. Park et al., Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5, 9464 (2015)
139.
go back to reference S. Shin, H.B. Lee, W. Jin et al., Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 6(20), 5444–5452 (2018) S. Shin, H.B. Lee, W. Jin et al., Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 6(20), 5444–5452 (2018)
140.
go back to reference D. Kim, E. Ko, K. Kim et al., Transparent and flexible Ag nanowire network covered by a thin ITO layer for flexible organic light emitting diodes. ECS J. Solid State Sci. Technol. 5(7), R124–R128 (2016) D. Kim, E. Ko, K. Kim et al., Transparent and flexible Ag nanowire network covered by a thin ITO layer for flexible organic light emitting diodes. ECS J. Solid State Sci. Technol. 5(7), R124–R128 (2016)
141.
go back to reference R. Niu, M. Jin, J. Cao et al., Self-healing flexible conductive film by repairing defects via flowable liquid metal droplets. Micromachines 10(2), 113 (2019) R. Niu, M. Jin, J. Cao et al., Self-healing flexible conductive film by repairing defects via flowable liquid metal droplets. Micromachines 10(2), 113 (2019)
142.
go back to reference Q. Tang, H. Shen, H. Yao et al., Preparation of silver nanowire/AZO composite film as a transparent conductive material. Ceram. Int. 43(1), 1106–1113 (2017) Q. Tang, H. Shen, H. Yao et al., Preparation of silver nanowire/AZO composite film as a transparent conductive material. Ceram. Int. 43(1), 1106–1113 (2017)
143.
go back to reference A.G. Ricciardulli, S. Yang, G.A.H. Wetzelaer et al., Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018) A.G. Ricciardulli, S. Yang, G.A.H. Wetzelaer et al., Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 28(14), 1706010 (2018)
144.
go back to reference D. Lee, H. Lee, Y. Ahn et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon 81, 439–446 (2015) D. Lee, H. Lee, Y. Ahn et al., High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon 81, 439–446 (2015)
145.
go back to reference H. Dong, Z. Wu, Y. Jiang et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 8(45), 31212–31221 (2016) H. Dong, Z. Wu, Y. Jiang et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 8(45), 31212–31221 (2016)
146.
go back to reference J. Miao, S. Chen, H. Liu et al., Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chem. Eng. J. 345, 260–270 (2018) J. Miao, S. Chen, H. Liu et al., Low-temperature nanowelding ultrathin silver nanowire sandwiched between polydopamine-functionalized graphene and conjugated polymer for highly stable and flexible transparent electrodes. Chem. Eng. J. 345, 260–270 (2018)
147.
go back to reference Y. Yang, W. Liu, Q. Huang et al., Full solution-processed fabrication of conductive hybrid paper electrodes for organic optoelectronics. ACS Sustain. Chem. Eng. 8(8), 3392–3400 (2020) Y. Yang, W. Liu, Q. Huang et al., Full solution-processed fabrication of conductive hybrid paper electrodes for organic optoelectronics. ACS Sustain. Chem. Eng. 8(8), 3392–3400 (2020)
148.
go back to reference J.W. Han, B. Jung, D.W. Kim et al., Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-Free organic light-emitting diodes. Org. Electron. 73, 13–17 (2019) J.W. Han, B. Jung, D.W. Kim et al., Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-Free organic light-emitting diodes. Org. Electron. 73, 13–17 (2019)
149.
go back to reference T. Sekitani, H. Nakajima, H. Maeda et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009) T. Sekitani, H. Nakajima, H. Maeda et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)
152.
go back to reference P. Shi, W. Wang, D. Liu et al., Structural and electrical properties of flexible ITO/In2O3 thermocouples on PI substrates under tensile stretching. ACS Appl. Electron. Mater. 1(7), 1105–1111 (2019) P. Shi, W. Wang, D. Liu et al., Structural and electrical properties of flexible ITO/In2O3 thermocouples on PI substrates under tensile stretching. ACS Appl. Electron. Mater. 1(7), 1105–1111 (2019)
154.
go back to reference S. Ziaei, Q. Wu, J. Fitch et al., Channel cracking and interfacial delamination of indium tin oxide (ITO) nano-sized films on polyethylene terephthalate (PET) substrates: experiments and modeling. Exp. Mech. 59(5), 703–712 (2019) S. Ziaei, Q. Wu, J. Fitch et al., Channel cracking and interfacial delamination of indium tin oxide (ITO) nano-sized films on polyethylene terephthalate (PET) substrates: experiments and modeling. Exp. Mech. 59(5), 703–712 (2019)
155.
go back to reference S. Won, J. Jang, H. Choi et al., A graphene meta-interface for enhancing the stretchability of brittle oxide layers. Nanoscale 8(9), 4961–4968 (2016) S. Won, J. Jang, H. Choi et al., A graphene meta-interface for enhancing the stretchability of brittle oxide layers. Nanoscale 8(9), 4961–4968 (2016)
156.
go back to reference J.H. Kwon, J. Park, M.K. Lee et al., Low-temperature fabrication of robust, transparent, and flexible thin-film transistors with a nanolaminated insulator. ACS Appl. Mater. Interfaces 10(18), 15829–15840 (2018) J.H. Kwon, J. Park, M.K. Lee et al., Low-temperature fabrication of robust, transparent, and flexible thin-film transistors with a nanolaminated insulator. ACS Appl. Mater. Interfaces 10(18), 15829–15840 (2018)
157.
go back to reference Y. Chen, Y. Chen, P. Dong et al., Benchmarked photoelectrochemical water splitting by nickel-doped n-type cuprous oxide. ACS Appl. Energy Mater. 3(2), 1373–1380 (2020) Y. Chen, Y. Chen, P. Dong et al., Benchmarked photoelectrochemical water splitting by nickel-doped n-type cuprous oxide. ACS Appl. Energy Mater. 3(2), 1373–1380 (2020)
159.
go back to reference S.M. Mehdi, M. Akhtar, S.Z. Qamar, Electromechanical response of delaminating polymer thin films on rough elastomeric substrate. J. Elast. Plast. 49(8), 696–705 (2017) S.M. Mehdi, M. Akhtar, S.Z. Qamar, Electromechanical response of delaminating polymer thin films on rough elastomeric substrate. J. Elast. Plast. 49(8), 696–705 (2017)
160.
go back to reference C. Shih, Y. Lin, M. Gao et al., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 426, 205–215 (2019) C. Shih, Y. Lin, M. Gao et al., A rapid and green method for the fabrication of conductive hydrogels and their applications in stretchable supercapacitors. J. Power Sources 426, 205–215 (2019)
162.
go back to reference J.H. Lee, Y.R. Jeong, G. Lee et al., Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 10(33), 28027–28035 (2018) J.H. Lee, Y.R. Jeong, G. Lee et al., Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl. Mater. Interfaces 10(33), 28027–28035 (2018)
163.
go back to reference C. Yeon, G. Kim, J.W. Lim et al., Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv. 7(10), 5888–5897 (2017) C. Yeon, G. Kim, J.W. Lim et al., Highly conductive PEDOT:PSS treated by sodium dodecyl sulfate for stretchable fabric heaters. RSC Adv. 7(10), 5888–5897 (2017)
164.
go back to reference M.Y. Teo, N. Kim, S. Kee et al., Highly Stretchable And Highly Conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9(1), 819–826 (2017) M.Y. Teo, N. Kim, S. Kee et al., Highly Stretchable And Highly Conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl. Mater. Interfaces 9(1), 819–826 (2017)
165.
go back to reference K.S. Kim, Y. Zhao, H. Jang et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009) K.S. Kim, Y. Zhao, H. Jang et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)
166.
go back to reference P. Xu, J. Kang, J. Suhr et al., Spatial strain variation of graphene films for stretchable electrodes. Carbon 93, 620–624 (2015) P. Xu, J. Kang, J. Suhr et al., Spatial strain variation of graphene films for stretchable electrodes. Carbon 93, 620–624 (2015)
167.
go back to reference K. Yong, S. De, E.Y. Hsieh et al., Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020) K. Yong, S. De, E.Y. Hsieh et al., Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 34, 58–65 (2020)
168.
go back to reference J. Hong, W. Kim, D. Choi et al., Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10), 9446–9455 (2016) J. Hong, W. Kim, D. Choi et al., Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10), 9446–9455 (2016)
169.
go back to reference N. Liu, A. Chortos, T. Lei et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), e1700159 (2017) N. Liu, A. Chortos, T. Lei et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), e1700159 (2017)
170.
go back to reference Y.R. Lee, J. Park, Y. Jeong et al., Improved mechanical and electrical properties of carbon nanotube yarns by wet impregnation and multi-ply twisting. Fibers Polym. 19(12), 2478–2482 (2018) Y.R. Lee, J. Park, Y. Jeong et al., Improved mechanical and electrical properties of carbon nanotube yarns by wet impregnation and multi-ply twisting. Fibers Polym. 19(12), 2478–2482 (2018)
171.
go back to reference J. Zhuang, X. Jiang, J. Wang et al., Stretchable electrode composed of carbon nanotube-SBS hybrid film and its application on biosensor. J. Electrochem. Soc. 164(14), H1028–H1032 (2017) J. Zhuang, X. Jiang, J. Wang et al., Stretchable electrode composed of carbon nanotube-SBS hybrid film and its application on biosensor. J. Electrochem. Soc. 164(14), H1028–H1032 (2017)
173.
go back to reference Z. Niu, H. Dong, B. Zhu et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25(7), 1058–1064 (2013) Z. Niu, H. Dong, B. Zhu et al., Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25(7), 1058–1064 (2013)
174.
go back to reference Y. Yu, S. Luo, L. Sun et al., Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 7(22), 10178–10185 (2015) Y. Yu, S. Luo, L. Sun et al., Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 7(22), 10178–10185 (2015)
175.
go back to reference Y. Zhang, C.J. Sheehan, J. Zhai et al., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22(28), 3027–3031 (2010) Y. Zhang, C.J. Sheehan, J. Zhai et al., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22(28), 3027–3031 (2010)
176.
go back to reference M.K. Shin, J. Oh, M. Lima et al., Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22(24), 2663 (2010) M.K. Shin, J. Oh, M. Lima et al., Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22(24), 2663 (2010)
177.
go back to reference D.J. Lipomi, M. Vosgueritchian, B.C. Tee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011) D.J. Lipomi, M. Vosgueritchian, B.C. Tee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)
178.
go back to reference Y. Kim, J. Zhu, B. Yeom et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500(7460), 59–77 (2013) Y. Kim, J. Zhu, B. Yeom et al., Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500(7460), 59–77 (2013)
179.
go back to reference X. Wang, H. Hu, Y. Shen et al., Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 23(27), 3090 (2011) X. Wang, H. Hu, Y. Shen et al., Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 23(27), 3090 (2011)
180.
go back to reference F. Liang, Y. Chang, C. Kuo et al., A mechanically robust silver nanowire-polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays. Nanoscale 11(4), 1520–1530 (2019) F. Liang, Y. Chang, C. Kuo et al., A mechanically robust silver nanowire-polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays. Nanoscale 11(4), 1520–1530 (2019)
181.
go back to reference H. Fan, K. Li, Q. Li et al., Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 5(37), 9778–9785 (2017) H. Fan, K. Li, Q. Li et al., Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 5(37), 9778–9785 (2017)
182.
go back to reference H. Liu, B. Pan, G. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9(7), 2633–2639 (2017) H. Liu, B. Pan, G. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9(7), 2633–2639 (2017)
184.
go back to reference H. Jung, H. Go, G. Park et al., Silver nanowire-based stretchable transparent electrode for flexible organic light-emitting diode. J. Nanosci. Nanotechnol. 19(4), 2044–2048 (2019) H. Jung, H. Go, G. Park et al., Silver nanowire-based stretchable transparent electrode for flexible organic light-emitting diode. J. Nanosci. Nanotechnol. 19(4), 2044–2048 (2019)
185.
go back to reference Y. Huang, Y. Tian, C. Hang et al., TiO2-coated core–shell ag nanowire networks for robust and washable flexible transparent electrodes. ACS Appl. Nano Mater. 2(4), 2456–2466 (2019) Y. Huang, Y. Tian, C. Hang et al., TiO2-coated core–shell ag nanowire networks for robust and washable flexible transparent electrodes. ACS Appl. Nano Mater. 2(4), 2456–2466 (2019)
186.
go back to reference R. Yin, S. Yang, Q. Li et al., Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65(11), 899–908 (2020) R. Yin, S. Yang, Q. Li et al., Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci. Bull. 65(11), 899–908 (2020)
187.
go back to reference P. Lee, J. Lee, H. Lee et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012) P. Lee, J. Lee, H. Lee et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012)
188.
go back to reference J. Liang, L. Li, K. Tong et al., Silver Nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014) J. Liang, L. Li, K. Tong et al., Silver Nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014)
189.
go back to reference J. Lee, D. Shin, J. Park, Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films 608, 34–43 (2016) J. Lee, D. Shin, J. Park, Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films 608, 34–43 (2016)
192.
go back to reference C.S. Lee, J.E. Yoo, K. Shin et al., Carbon nanotube-silver nanowire composite networks on flexible substrates: high reliability and application for supercapacitor electrodes. Physica (a) 211(12), 2890–2897 (2014) C.S. Lee, J.E. Yoo, K. Shin et al., Carbon nanotube-silver nanowire composite networks on flexible substrates: high reliability and application for supercapacitor electrodes. Physica (a) 211(12), 2890–2897 (2014)
194.
go back to reference M. Lee, K. Lee, S. Kim et al., HIGH-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13(6), 2814–2821 (2013) M. Lee, K. Lee, S. Kim et al., HIGH-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13(6), 2814–2821 (2013)
195.
go back to reference C. Kim, C. Jung, Y. Oh et al., A highly flexible transparent conductive electrode based on nanomaterials. NPG Asia Mater. 9(10), e438 (2017) C. Kim, C. Jung, Y. Oh et al., A highly flexible transparent conductive electrode based on nanomaterials. NPG Asia Mater. 9(10), e438 (2017)
196.
go back to reference Y. Zhu, N. Li, T. Lv et al., Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 6(3), 941–947 (2018) Y. Zhu, N. Li, T. Lv et al., Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 6(3), 941–947 (2018)
197.
go back to reference T.Q. Trung, C. Kim, H.B. Lee et al., Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode. Adv. Mater. Technol. 5(2), 1900995 (2019) T.Q. Trung, C. Kim, H.B. Lee et al., Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode. Adv. Mater. Technol. 5(2), 1900995 (2019)
198.
go back to reference L. Jheng, C. Hsiao, W. Ko et al., Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology 30(23), 235201 (2019) L. Jheng, C. Hsiao, W. Ko et al., Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology 30(23), 235201 (2019)
201.
go back to reference C. Jiang, Q. Li, N. Sun et al., A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy 77, 105120 (2020) C. Jiang, Q. Li, N. Sun et al., A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system. Nano Energy 77, 105120 (2020)
204.
go back to reference Y. Jeon, H.R. Choi, K.C. Park et al., Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Display 28(4), 324–332 (2020) Y. Jeon, H.R. Choi, K.C. Park et al., Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Display 28(4), 324–332 (2020)
205.
go back to reference A.M. Zamarayeva, A.E. Ostfeld, M. Wang et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3(6), e1602051 (2017) A.M. Zamarayeva, A.E. Ostfeld, M. Wang et al., Flexible and stretchable power sources for wearable electronics. Sci. Adv. 3(6), e1602051 (2017)
206.
go back to reference Z. Zhao, H. Wu, Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Research 12(10), 2477–2484 (2019) Z. Zhao, H. Wu, Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Research 12(10), 2477–2484 (2019)
207.
go back to reference W.H. Cheong, B. Oh, S. Kim et al., Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 62, 230–238 (2019) W.H. Cheong, B. Oh, S. Kim et al., Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 62, 230–238 (2019)
208.
go back to reference H. Lee, E. Kim, Y. Lee et al., Toward all-day wearable health monitoring: an ultralow-power, reflective organi pulse oximetry sensing patch. Sci. Adv. 4(11), s9530 (2018) H. Lee, E. Kim, Y. Lee et al., Toward all-day wearable health monitoring: an ultralow-power, reflective organi pulse oximetry sensing patch. Sci. Adv. 4(11), s9530 (2018)
209.
go back to reference S. Kwon, H. Kim, S. Choi et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2017) S. Kwon, H. Kim, S. Choi et al., Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18(1), 347–356 (2017)
210.
go back to reference M. Dai, X. Xiao, X. Chen et al., A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australas. Phys. Eng. Sci. Med. 39(4), 1029–1040 (2016) M. Dai, X. Xiao, X. Chen et al., A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australas. Phys. Eng. Sci. Med. 39(4), 1029–1040 (2016)
211.
go back to reference C. Murawski, A. Mischok, J. Booth et al., Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging. Adv. Mater. 31(42), 1903599 (2019) C. Murawski, A. Mischok, J. Booth et al., Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging. Adv. Mater. 31(42), 1903599 (2019)
Metadata
Title
Performance of OLED under mechanical strain: a review
Authors
Nan Sun
Chengming Jiang
Qikun Li
Dongchen Tan
Sheng Bi
Jinhui Song
Publication date
04-11-2020
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 23/2020
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04652-5

Other articles of this Issue 23/2020

Journal of Materials Science: Materials in Electronics 23/2020 Go to the issue