Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 21/2023

09-01-2023 | Technical Article

Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite

Authors: Emon Barua, Apurba Das, Ashish B. Deoghare, D. Pamu, Payel Deb, Sumit Das Lala, Sushovan Chatterjee

Published in: Journal of Materials Engineering and Performance | Issue 21/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Considering the popularity of hydroxyapatite (HA)-based scaffolds and the varied sources of HA synthesis, their impact on the properties of the developed scaffolds needs to be properly explored. Moreover, conventional gas foaming process yields scaffolds with excellent pore morphology, but with closed pores which are inadequate for efficient osteoinduction. To address these issues, porous hydroxyapatite (HA)/polymethyl methacrylate (PMMA)/zinc oxide (ZnO)-based tri-component composite scaffolds are fabricated by a novel modified gas foaming process from both chemically synthesized HA and natural HA derived from galline and bovine bone bio-wastes. The role of the varying sources of HA on the physico-chemical, mechanical and biological properties of the developed scaffolds is investigated. For this purpose, the scaffolds developed by maintaining a constant composition of HA and PMMA at 70:30 (w/w) and ZnO at 5 wt.% are characterized. The developed scaffolds show stability in their chemical properties and interconnected macro-porous network with a maximum porosity of 81.93 ± 1.2%, average pore size of 149 ± 5 μm and maximum hydraulic permeability of (2.36 ± 0.09) × 103 µm2 for synthetic HA-based scaffolds. A maximum compressive strength, hardness and cell viability of 16.70 ± 0.6 MPa, 32.4 ± 0.9 HD and 98 ± 3.2%, respectively, and maximum protein adsorption are recorded for bovine bone-derived HA-based scaffolds. All the scaffolds are found to be bioactive in nature, while galline bone-derived HA-based scaffolds show maximum biodegradation with 8.1 ± 0.15% weight loss in SBF. The results obtained indicate that apart from the porosity and permeability, synthetic HA-based scaffolds reveal poor chemical, mechanical and biological properties compared to natural HA-based scaffolds. The study concludes that the properties of a composite scaffold rely significantly on the parent material (HA). Based on the extensive comparative investigation, bovine bone-derived HA-based composite scaffold is found to have improved properties for growth and proliferation of bone cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference S. Alonso-Sierra, R. Velázquez-Castillo, B. Millán-Malo, R. Nava, L. Bucio, A. Manzano-Ramírez, H. Cid-Luna and E.M. Rivera-Muñoz, Interconnected Porosity Analysis by 3D X-ray Microtomography and Mechanical Behavior of Biomimetic Organic-Inorganic Composite Materials, Mater. Sci. Eng. C, 2017, 80, p 45–53.CrossRef S. Alonso-Sierra, R. Velázquez-Castillo, B. Millán-Malo, R. Nava, L. Bucio, A. Manzano-Ramírez, H. Cid-Luna and E.M. Rivera-Muñoz, Interconnected Porosity Analysis by 3D X-ray Microtomography and Mechanical Behavior of Biomimetic Organic-Inorganic Composite Materials, Mater. Sci. Eng. C, 2017, 80, p 45–53.CrossRef
3.
go back to reference I. Sabree, J.E. Gough and B. Derby, Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions, Ceram. Int., 2015, 41(7), p 8425–8432.CrossRef I. Sabree, J.E. Gough and B. Derby, Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions, Ceram. Int., 2015, 41(7), p 8425–8432.CrossRef
4.
go back to reference S. Li, J.R. De Wijn, J. Li, P. Layrolle and K. De Groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Eng., 2003, 9(3), p 535–548.CrossRef S. Li, J.R. De Wijn, J. Li, P. Layrolle and K. De Groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Eng., 2003, 9(3), p 535–548.CrossRef
5.
go back to reference K. Zhang, Y. Fan, N. Dunne and X. Li, Effect of Microporosity on Scaffolds for Bone Tissue Engineering, Regen. Biomater., 2018, 5, p 115–124.CrossRef K. Zhang, Y. Fan, N. Dunne and X. Li, Effect of Microporosity on Scaffolds for Bone Tissue Engineering, Regen. Biomater., 2018, 5, p 115–124.CrossRef
8.
go back to reference P. Deb, E. Barua, A.B. Deoghare and S. Das Lala, Development of Bone Scaffold Using Puntius Conchonius Fish Scale Derived Hydroxyapatite: Physico-Mechanical and Bioactivity Evaluations, Ceram. Int., 2019, 45, p 10004–10012.CrossRef P. Deb, E. Barua, A.B. Deoghare and S. Das Lala, Development of Bone Scaffold Using Puntius Conchonius Fish Scale Derived Hydroxyapatite: Physico-Mechanical and Bioactivity Evaluations, Ceram. Int., 2019, 45, p 10004–10012.CrossRef
9.
go back to reference P. Deb and A.B. Deoghare, Effect of Acid, Alkali and Alkali-Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla Catla Fish Scales, Arab. J. Sci. Eng., 2019, 44, p 7479–7490.CrossRef P. Deb and A.B. Deoghare, Effect of Acid, Alkali and Alkali-Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla Catla Fish Scales, Arab. J. Sci. Eng., 2019, 44, p 7479–7490.CrossRef
11.
go back to reference J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research, Endocrinology, 1998, 139(2), p 663–670.CrossRef J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research, Endocrinology, 1998, 139(2), p 663–670.CrossRef
12.
go back to reference V.S. Kattimani, S. Kondaka and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regen. Insights, 2016, 7, p BTRI.S36138.CrossRef V.S. Kattimani, S. Kondaka and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regen. Insights, 2016, 7, p BTRI.S36138.CrossRef
13.
16.
go back to reference F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang and K. Yang, Study on Beta-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material, J. Mater. Sci. Technol., 2009, 25(1), p 123–129. F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang and K. Yang, Study on Beta-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material, J. Mater. Sci. Technol., 2009, 25(1), p 123–129.
17.
go back to reference M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget and P. Layrolle, Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering, Biomaterials, 2008, 29(17), p 2608–2615.CrossRef M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget and P. Layrolle, Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering, Biomaterials, 2008, 29(17), p 2608–2615.CrossRef
21.
go back to reference P. Scherrer, Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen Math Klasse, Phys, 1918, 2, p 98–100. P. Scherrer, Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen Math Klasse, Phys, 1918, 2, p 98–100.
22.
go back to reference T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef
25.
go back to reference J.K. Han, H.Y. Song, F. Saito and B.T. Lee, Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method, Mater. Chem. Phys., 2006, 99(2–3), p 235–239.CrossRef J.K. Han, H.Y. Song, F. Saito and B.T. Lee, Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method, Mater. Chem. Phys., 2006, 99(2–3), p 235–239.CrossRef
26.
go back to reference A. Destainville, E. Champion, D. Bernache-Assollant and E. Laborde, Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 2003, 80(1), p 269–277.CrossRef A. Destainville, E. Champion, D. Bernache-Assollant and E. Laborde, Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 2003, 80(1), p 269–277.CrossRef
27.
go back to reference I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh and M. Zakeri, Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method, J. Alloys Compd., 2007, 430(1–2), p 330–333.CrossRef I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh and M. Zakeri, Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method, J. Alloys Compd., 2007, 430(1–2), p 330–333.CrossRef
28.
go back to reference S. Meejoo, W. Maneeprakorn and P. Winotai, Phase and Thermal Stability of Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochim. Acta, 2006, 447(1), p 115–120.CrossRef S. Meejoo, W. Maneeprakorn and P. Winotai, Phase and Thermal Stability of Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochim. Acta, 2006, 447(1), p 115–120.CrossRef
29.
go back to reference M.E. Fleet, X. Liu and P.L. King, Accommodation of the Carbonate Ion in Apatite: An FTIR and X-ray Structure Study of Crystals Synthesized at 2-4 GPa, Am. Mineral., 2004, 89(10), p 1422–1432.CrossRef M.E. Fleet, X. Liu and P.L. King, Accommodation of the Carbonate Ion in Apatite: An FTIR and X-ray Structure Study of Crystals Synthesized at 2-4 GPa, Am. Mineral., 2004, 89(10), p 1422–1432.CrossRef
30.
go back to reference S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays and M.G. Kuzyk, Spectroscopic Studies of the Mechanism of Reversible Photodegradation of 1-Substituted Aminoanthraquinone-Doped Polymers, J. Chem. Phys., 2016 https://doi.org/10.1063/1.4943963CrossRef S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays and M.G. Kuzyk, Spectroscopic Studies of the Mechanism of Reversible Photodegradation of 1-Substituted Aminoanthraquinone-Doped Polymers, J. Chem. Phys., 2016 https://​doi.​org/​10.​1063/​1.​4943963CrossRef
31.
go back to reference G. Duan, C. Zhang, A. Li, X. Yang, L. Lu and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methyl Methacrylate) Template, Nanoscale Res. Lett., 2008, 3(3), p 118–122.CrossRef G. Duan, C. Zhang, A. Li, X. Yang, L. Lu and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methyl Methacrylate) Template, Nanoscale Res. Lett., 2008, 3(3), p 118–122.CrossRef
32.
go back to reference J.A. Rincón-López, J.A. Hermann-muñoz, A.L. Giraldo-betancur, A. De Vizcaya-ruiz, J.M. Alvarado-orozco and J. Muñoz-saldaña, Synthesis Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.CrossRef J.A. Rincón-López, J.A. Hermann-muñoz, A.L. Giraldo-betancur, A. De Vizcaya-ruiz, J.M. Alvarado-orozco and J. Muñoz-saldaña, Synthesis Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.CrossRef
33.
go back to reference A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone, Curr. Appl. Phys., 2008, 8(3–4), p 270–272.CrossRef A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone, Curr. Appl. Phys., 2008, 8(3–4), p 270–272.CrossRef
35.
go back to reference K. Alvarez and H. Nakajima, Metallic Scaffolds for Bone Regeneration, Materials (Basel), 2009, 2(3), p 790–832.CrossRef K. Alvarez and H. Nakajima, Metallic Scaffolds for Bone Regeneration, Materials (Basel), 2009, 2(3), p 790–832.CrossRef
36.
go back to reference E.D. Pellegrino and R.M. Biltz, Bone Carbonate and the Ca to P Molar Ratio, Nature, 1968, 219, p 1261–1262.CrossRef E.D. Pellegrino and R.M. Biltz, Bone Carbonate and the Ca to P Molar Ratio, Nature, 1968, 219, p 1261–1262.CrossRef
37.
go back to reference U.E. Pazzaglia, T. Congiu, F. Ranchetti, M. Salari and C.D. Orbo, Scanning Electron Microscopy Study of Bone Intracortical Vessels using an Injection and Fractured Surfaces Technique, Anat. Sci. Int., 2010, 85, p 31–37.CrossRef U.E. Pazzaglia, T. Congiu, F. Ranchetti, M. Salari and C.D. Orbo, Scanning Electron Microscopy Study of Bone Intracortical Vessels using an Injection and Fractured Surfaces Technique, Anat. Sci. Int., 2010, 85, p 31–37.CrossRef
38.
go back to reference A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela and J. Aragon, A Comparative Study of Hydroxyapatite Nanoparticles Synthesized by Different Routes, Quim. Nova, 2012, 35(9), p 1724–1727.CrossRef A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela and J. Aragon, A Comparative Study of Hydroxyapatite Nanoparticles Synthesized by Different Routes, Quim. Nova, 2012, 35(9), p 1724–1727.CrossRef
39.
go back to reference W. Brigitte and J.D. Pasteris, A Mineralogical Perspective on the Apatite in Bone, Mater. Sci. Eng. C, 2005, 25, p 131–143.CrossRef W. Brigitte and J.D. Pasteris, A Mineralogical Perspective on the Apatite in Bone, Mater. Sci. Eng. C, 2005, 25, p 131–143.CrossRef
41.
go back to reference H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, An In Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration, Acta Biomater., 2008, 4(5), p 1472–1479.CrossRef H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, An In Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration, Acta Biomater., 2008, 4(5), p 1472–1479.CrossRef
42.
go back to reference N. Kourkoumelis, I. Balatsoukas and M. Tzaphlidou, Ca/P Concentration Ratio at Different Sites of Normal and Osteoporotic Rabbit Bones Evaluated by Auger and Energy Dispersive X-ray Spectroscopy, J. Biol. Phys., 2012, 38(2), p 279–291.CrossRef N. Kourkoumelis, I. Balatsoukas and M. Tzaphlidou, Ca/P Concentration Ratio at Different Sites of Normal and Osteoporotic Rabbit Bones Evaluated by Auger and Energy Dispersive X-ray Spectroscopy, J. Biol. Phys., 2012, 38(2), p 279–291.CrossRef
43.
go back to reference J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, B. Descamps and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 1999, 1999(10), p 111–120.CrossRef J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, B. Descamps and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 1999, 1999(10), p 111–120.CrossRef
45.
go back to reference E. Skwarek, W. Janusz and D. Sternik, The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite, Adsorpt. Sci. Technol., 2017, 35(5–6), p 507–518.CrossRef E. Skwarek, W. Janusz and D. Sternik, The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite, Adsorpt. Sci. Technol., 2017, 35(5–6), p 507–518.CrossRef
47.
go back to reference H. Haugen, J. Will, A. Ko, U. Hopfner, J. Aigner and E. Wintermantel, Ceramic TiO 2 -Foams: Characterisation of a Potential Scaffold, J. Eur. Ceram. Soc., 2004, 24, p 661–668.CrossRef H. Haugen, J. Will, A. Ko, U. Hopfner, J. Aigner and E. Wintermantel, Ceramic TiO 2 -Foams: Characterisation of a Potential Scaffold, J. Eur. Ceram. Soc., 2004, 24, p 661–668.CrossRef
49.
go back to reference T.R. Kyriakides, Molecular Events at Tissue-Biomaterial Interface, Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection, Elsevier, 2015. T.R. Kyriakides, Molecular Events at Tissue-Biomaterial Interface, Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection, Elsevier, 2015.
52.
go back to reference R. Saidi, M.H. Fathi and H. Salimijazi, Fabrication and Characterization of Hydroxyapatite-Coated Forsterite Scaffold for Tissue Regeneration Applications, Bull. Mater. Sci., 2015, 38(5), p 1367–1374.CrossRef R. Saidi, M.H. Fathi and H. Salimijazi, Fabrication and Characterization of Hydroxyapatite-Coated Forsterite Scaffold for Tissue Regeneration Applications, Bull. Mater. Sci., 2015, 38(5), p 1367–1374.CrossRef
53.
go back to reference H. Ghomi, H. Edris and M.H. Fathi, Preparation of Nanostructure Hydroxyapatite Scaffold for Tissue Engineering Applications, J. Sol-Gel Sci. Technol., 2011, 58, p 642–650.CrossRef H. Ghomi, H. Edris and M.H. Fathi, Preparation of Nanostructure Hydroxyapatite Scaffold for Tissue Engineering Applications, J. Sol-Gel Sci. Technol., 2011, 58, p 642–650.CrossRef
54.
go back to reference Z.H. Pan, H.P. Cai, P.P. Jiang and Q.Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, J. Polym. Res., 2006, 13, p 323–327.CrossRef Z.H. Pan, H.P. Cai, P.P. Jiang and Q.Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, J. Polym. Res., 2006, 13, p 323–327.CrossRef
55.
go back to reference C. Gao, X. Hu and Y. Hong, Photografting of Poly ( Hydroxylethyl Acrylate) onto Porous Polyurethane Scaffolds to Improve Their Endothelial Cell Compatibility, J. Biomater. Sci. Polym. Ed., 2012, 14, p 937–950.CrossRef C. Gao, X. Hu and Y. Hong, Photografting of Poly ( Hydroxylethyl Acrylate) onto Porous Polyurethane Scaffolds to Improve Their Endothelial Cell Compatibility, J. Biomater. Sci. Polym. Ed., 2012, 14, p 937–950.CrossRef
56.
go back to reference W.H. Lee, A.V. Zavgorodniy, C.Y. Loo and R. Rohanizadeh, Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release, J. Biomed. Mater. Res. Part A, 2012, 100A(6), p 1539–1549.CrossRef W.H. Lee, A.V. Zavgorodniy, C.Y. Loo and R. Rohanizadeh, Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release, J. Biomed. Mater. Res. Part A, 2012, 100A(6), p 1539–1549.CrossRef
57.
go back to reference C.J. Wilson, R.E. Clegg, D. Ph, D.I. Leavesley, D. Ph, M.J. Pearcy and D. Ph, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review, Tissue Eng., 2005, 11(1), p 1–18.CrossRef C.J. Wilson, R.E. Clegg, D. Ph, D.I. Leavesley, D. Ph, M.J. Pearcy and D. Ph, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review, Tissue Eng., 2005, 11(1), p 1–18.CrossRef
Metadata
Title
Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite
Authors
Emon Barua
Apurba Das
Ashish B. Deoghare
D. Pamu
Payel Deb
Sumit Das Lala
Sushovan Chatterjee
Publication date
09-01-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 21/2023
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07789-y

Other articles of this Issue 21/2023

Journal of Materials Engineering and Performance 21/2023 Go to the issue

Premium Partners