Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 21/2023

09.01.2023 | Technical Article

Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite

verfasst von: Emon Barua, Apurba Das, Ashish B. Deoghare, D. Pamu, Payel Deb, Sumit Das Lala, Sushovan Chatterjee

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 21/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considering the popularity of hydroxyapatite (HA)-based scaffolds and the varied sources of HA synthesis, their impact on the properties of the developed scaffolds needs to be properly explored. Moreover, conventional gas foaming process yields scaffolds with excellent pore morphology, but with closed pores which are inadequate for efficient osteoinduction. To address these issues, porous hydroxyapatite (HA)/polymethyl methacrylate (PMMA)/zinc oxide (ZnO)-based tri-component composite scaffolds are fabricated by a novel modified gas foaming process from both chemically synthesized HA and natural HA derived from galline and bovine bone bio-wastes. The role of the varying sources of HA on the physico-chemical, mechanical and biological properties of the developed scaffolds is investigated. For this purpose, the scaffolds developed by maintaining a constant composition of HA and PMMA at 70:30 (w/w) and ZnO at 5 wt.% are characterized. The developed scaffolds show stability in their chemical properties and interconnected macro-porous network with a maximum porosity of 81.93 ± 1.2%, average pore size of 149 ± 5 μm and maximum hydraulic permeability of (2.36 ± 0.09) × 103 µm2 for synthetic HA-based scaffolds. A maximum compressive strength, hardness and cell viability of 16.70 ± 0.6 MPa, 32.4 ± 0.9 HD and 98 ± 3.2%, respectively, and maximum protein adsorption are recorded for bovine bone-derived HA-based scaffolds. All the scaffolds are found to be bioactive in nature, while galline bone-derived HA-based scaffolds show maximum biodegradation with 8.1 ± 0.15% weight loss in SBF. The results obtained indicate that apart from the porosity and permeability, synthetic HA-based scaffolds reveal poor chemical, mechanical and biological properties compared to natural HA-based scaffolds. The study concludes that the properties of a composite scaffold rely significantly on the parent material (HA). Based on the extensive comparative investigation, bovine bone-derived HA-based composite scaffold is found to have improved properties for growth and proliferation of bone cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat S. Alonso-Sierra, R. Velázquez-Castillo, B. Millán-Malo, R. Nava, L. Bucio, A. Manzano-Ramírez, H. Cid-Luna and E.M. Rivera-Muñoz, Interconnected Porosity Analysis by 3D X-ray Microtomography and Mechanical Behavior of Biomimetic Organic-Inorganic Composite Materials, Mater. Sci. Eng. C, 2017, 80, p 45–53.CrossRef S. Alonso-Sierra, R. Velázquez-Castillo, B. Millán-Malo, R. Nava, L. Bucio, A. Manzano-Ramírez, H. Cid-Luna and E.M. Rivera-Muñoz, Interconnected Porosity Analysis by 3D X-ray Microtomography and Mechanical Behavior of Biomimetic Organic-Inorganic Composite Materials, Mater. Sci. Eng. C, 2017, 80, p 45–53.CrossRef
3.
Zurück zum Zitat I. Sabree, J.E. Gough and B. Derby, Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions, Ceram. Int., 2015, 41(7), p 8425–8432.CrossRef I. Sabree, J.E. Gough and B. Derby, Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions, Ceram. Int., 2015, 41(7), p 8425–8432.CrossRef
4.
Zurück zum Zitat S. Li, J.R. De Wijn, J. Li, P. Layrolle and K. De Groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Eng., 2003, 9(3), p 535–548.CrossRef S. Li, J.R. De Wijn, J. Li, P. Layrolle and K. De Groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Eng., 2003, 9(3), p 535–548.CrossRef
5.
Zurück zum Zitat K. Zhang, Y. Fan, N. Dunne and X. Li, Effect of Microporosity on Scaffolds for Bone Tissue Engineering, Regen. Biomater., 2018, 5, p 115–124.CrossRef K. Zhang, Y. Fan, N. Dunne and X. Li, Effect of Microporosity on Scaffolds for Bone Tissue Engineering, Regen. Biomater., 2018, 5, p 115–124.CrossRef
8.
Zurück zum Zitat P. Deb, E. Barua, A.B. Deoghare and S. Das Lala, Development of Bone Scaffold Using Puntius Conchonius Fish Scale Derived Hydroxyapatite: Physico-Mechanical and Bioactivity Evaluations, Ceram. Int., 2019, 45, p 10004–10012.CrossRef P. Deb, E. Barua, A.B. Deoghare and S. Das Lala, Development of Bone Scaffold Using Puntius Conchonius Fish Scale Derived Hydroxyapatite: Physico-Mechanical and Bioactivity Evaluations, Ceram. Int., 2019, 45, p 10004–10012.CrossRef
9.
Zurück zum Zitat P. Deb and A.B. Deoghare, Effect of Acid, Alkali and Alkali-Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla Catla Fish Scales, Arab. J. Sci. Eng., 2019, 44, p 7479–7490.CrossRef P. Deb and A.B. Deoghare, Effect of Acid, Alkali and Alkali-Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla Catla Fish Scales, Arab. J. Sci. Eng., 2019, 44, p 7479–7490.CrossRef
11.
Zurück zum Zitat J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research, Endocrinology, 1998, 139(2), p 663–670.CrossRef J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research, Endocrinology, 1998, 139(2), p 663–670.CrossRef
12.
Zurück zum Zitat V.S. Kattimani, S. Kondaka and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regen. Insights, 2016, 7, p BTRI.S36138.CrossRef V.S. Kattimani, S. Kondaka and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regen. Insights, 2016, 7, p BTRI.S36138.CrossRef
13.
Zurück zum Zitat G. Radha, S. Balakumar, B. Venkatesan and E. Vellaichamy, A Novel Nano-Hydroxyapatite—PMMA Hybrid Scaffolds Adopted by Conjugated Thermal Induced Phase Separation (TIPS) and Wet-Chemical Approach: Analysis of Its Mechanical and Biological Properties, Mater. Sci. Eng. C, 2017, 73, p 164–172. https://doi.org/10.1016/j.msec.2016.12.133CrossRef G. Radha, S. Balakumar, B. Venkatesan and E. Vellaichamy, A Novel Nano-Hydroxyapatite—PMMA Hybrid Scaffolds Adopted by Conjugated Thermal Induced Phase Separation (TIPS) and Wet-Chemical Approach: Analysis of Its Mechanical and Biological Properties, Mater. Sci. Eng. C, 2017, 73, p 164–172. https://​doi.​org/​10.​1016/​j.​msec.​2016.​12.​133CrossRef
16.
Zurück zum Zitat F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang and K. Yang, Study on Beta-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material, J. Mater. Sci. Technol., 2009, 25(1), p 123–129. F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang and K. Yang, Study on Beta-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material, J. Mater. Sci. Technol., 2009, 25(1), p 123–129.
17.
Zurück zum Zitat M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget and P. Layrolle, Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering, Biomaterials, 2008, 29(17), p 2608–2615.CrossRef M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget and P. Layrolle, Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering, Biomaterials, 2008, 29(17), p 2608–2615.CrossRef
21.
Zurück zum Zitat P. Scherrer, Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen Math Klasse, Phys, 1918, 2, p 98–100. P. Scherrer, Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen Math Klasse, Phys, 1918, 2, p 98–100.
22.
Zurück zum Zitat T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef
25.
Zurück zum Zitat J.K. Han, H.Y. Song, F. Saito and B.T. Lee, Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method, Mater. Chem. Phys., 2006, 99(2–3), p 235–239.CrossRef J.K. Han, H.Y. Song, F. Saito and B.T. Lee, Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method, Mater. Chem. Phys., 2006, 99(2–3), p 235–239.CrossRef
26.
Zurück zum Zitat A. Destainville, E. Champion, D. Bernache-Assollant and E. Laborde, Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 2003, 80(1), p 269–277.CrossRef A. Destainville, E. Champion, D. Bernache-Assollant and E. Laborde, Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 2003, 80(1), p 269–277.CrossRef
27.
Zurück zum Zitat I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh and M. Zakeri, Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method, J. Alloys Compd., 2007, 430(1–2), p 330–333.CrossRef I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh and M. Zakeri, Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method, J. Alloys Compd., 2007, 430(1–2), p 330–333.CrossRef
28.
Zurück zum Zitat S. Meejoo, W. Maneeprakorn and P. Winotai, Phase and Thermal Stability of Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochim. Acta, 2006, 447(1), p 115–120.CrossRef S. Meejoo, W. Maneeprakorn and P. Winotai, Phase and Thermal Stability of Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochim. Acta, 2006, 447(1), p 115–120.CrossRef
29.
Zurück zum Zitat M.E. Fleet, X. Liu and P.L. King, Accommodation of the Carbonate Ion in Apatite: An FTIR and X-ray Structure Study of Crystals Synthesized at 2-4 GPa, Am. Mineral., 2004, 89(10), p 1422–1432.CrossRef M.E. Fleet, X. Liu and P.L. King, Accommodation of the Carbonate Ion in Apatite: An FTIR and X-ray Structure Study of Crystals Synthesized at 2-4 GPa, Am. Mineral., 2004, 89(10), p 1422–1432.CrossRef
30.
Zurück zum Zitat S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays and M.G. Kuzyk, Spectroscopic Studies of the Mechanism of Reversible Photodegradation of 1-Substituted Aminoanthraquinone-Doped Polymers, J. Chem. Phys., 2016 https://doi.org/10.1063/1.4943963CrossRef S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays and M.G. Kuzyk, Spectroscopic Studies of the Mechanism of Reversible Photodegradation of 1-Substituted Aminoanthraquinone-Doped Polymers, J. Chem. Phys., 2016 https://​doi.​org/​10.​1063/​1.​4943963CrossRef
31.
Zurück zum Zitat G. Duan, C. Zhang, A. Li, X. Yang, L. Lu and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methyl Methacrylate) Template, Nanoscale Res. Lett., 2008, 3(3), p 118–122.CrossRef G. Duan, C. Zhang, A. Li, X. Yang, L. Lu and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methyl Methacrylate) Template, Nanoscale Res. Lett., 2008, 3(3), p 118–122.CrossRef
32.
Zurück zum Zitat J.A. Rincón-López, J.A. Hermann-muñoz, A.L. Giraldo-betancur, A. De Vizcaya-ruiz, J.M. Alvarado-orozco and J. Muñoz-saldaña, Synthesis Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.CrossRef J.A. Rincón-López, J.A. Hermann-muñoz, A.L. Giraldo-betancur, A. De Vizcaya-ruiz, J.M. Alvarado-orozco and J. Muñoz-saldaña, Synthesis Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.CrossRef
33.
Zurück zum Zitat A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone, Curr. Appl. Phys., 2008, 8(3–4), p 270–272.CrossRef A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone, Curr. Appl. Phys., 2008, 8(3–4), p 270–272.CrossRef
35.
Zurück zum Zitat K. Alvarez and H. Nakajima, Metallic Scaffolds for Bone Regeneration, Materials (Basel), 2009, 2(3), p 790–832.CrossRef K. Alvarez and H. Nakajima, Metallic Scaffolds for Bone Regeneration, Materials (Basel), 2009, 2(3), p 790–832.CrossRef
36.
Zurück zum Zitat E.D. Pellegrino and R.M. Biltz, Bone Carbonate and the Ca to P Molar Ratio, Nature, 1968, 219, p 1261–1262.CrossRef E.D. Pellegrino and R.M. Biltz, Bone Carbonate and the Ca to P Molar Ratio, Nature, 1968, 219, p 1261–1262.CrossRef
37.
Zurück zum Zitat U.E. Pazzaglia, T. Congiu, F. Ranchetti, M. Salari and C.D. Orbo, Scanning Electron Microscopy Study of Bone Intracortical Vessels using an Injection and Fractured Surfaces Technique, Anat. Sci. Int., 2010, 85, p 31–37.CrossRef U.E. Pazzaglia, T. Congiu, F. Ranchetti, M. Salari and C.D. Orbo, Scanning Electron Microscopy Study of Bone Intracortical Vessels using an Injection and Fractured Surfaces Technique, Anat. Sci. Int., 2010, 85, p 31–37.CrossRef
38.
Zurück zum Zitat A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela and J. Aragon, A Comparative Study of Hydroxyapatite Nanoparticles Synthesized by Different Routes, Quim. Nova, 2012, 35(9), p 1724–1727.CrossRef A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela and J. Aragon, A Comparative Study of Hydroxyapatite Nanoparticles Synthesized by Different Routes, Quim. Nova, 2012, 35(9), p 1724–1727.CrossRef
39.
Zurück zum Zitat W. Brigitte and J.D. Pasteris, A Mineralogical Perspective on the Apatite in Bone, Mater. Sci. Eng. C, 2005, 25, p 131–143.CrossRef W. Brigitte and J.D. Pasteris, A Mineralogical Perspective on the Apatite in Bone, Mater. Sci. Eng. C, 2005, 25, p 131–143.CrossRef
41.
Zurück zum Zitat H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, An In Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration, Acta Biomater., 2008, 4(5), p 1472–1479.CrossRef H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, An In Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration, Acta Biomater., 2008, 4(5), p 1472–1479.CrossRef
42.
Zurück zum Zitat N. Kourkoumelis, I. Balatsoukas and M. Tzaphlidou, Ca/P Concentration Ratio at Different Sites of Normal and Osteoporotic Rabbit Bones Evaluated by Auger and Energy Dispersive X-ray Spectroscopy, J. Biol. Phys., 2012, 38(2), p 279–291.CrossRef N. Kourkoumelis, I. Balatsoukas and M. Tzaphlidou, Ca/P Concentration Ratio at Different Sites of Normal and Osteoporotic Rabbit Bones Evaluated by Auger and Energy Dispersive X-ray Spectroscopy, J. Biol. Phys., 2012, 38(2), p 279–291.CrossRef
43.
Zurück zum Zitat J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, B. Descamps and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 1999, 1999(10), p 111–120.CrossRef J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, B. Descamps and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 1999, 1999(10), p 111–120.CrossRef
45.
Zurück zum Zitat E. Skwarek, W. Janusz and D. Sternik, The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite, Adsorpt. Sci. Technol., 2017, 35(5–6), p 507–518.CrossRef E. Skwarek, W. Janusz and D. Sternik, The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite, Adsorpt. Sci. Technol., 2017, 35(5–6), p 507–518.CrossRef
47.
Zurück zum Zitat H. Haugen, J. Will, A. Ko, U. Hopfner, J. Aigner and E. Wintermantel, Ceramic TiO 2 -Foams: Characterisation of a Potential Scaffold, J. Eur. Ceram. Soc., 2004, 24, p 661–668.CrossRef H. Haugen, J. Will, A. Ko, U. Hopfner, J. Aigner and E. Wintermantel, Ceramic TiO 2 -Foams: Characterisation of a Potential Scaffold, J. Eur. Ceram. Soc., 2004, 24, p 661–668.CrossRef
49.
Zurück zum Zitat T.R. Kyriakides, Molecular Events at Tissue-Biomaterial Interface, Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection, Elsevier, 2015. T.R. Kyriakides, Molecular Events at Tissue-Biomaterial Interface, Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection, Elsevier, 2015.
52.
Zurück zum Zitat R. Saidi, M.H. Fathi and H. Salimijazi, Fabrication and Characterization of Hydroxyapatite-Coated Forsterite Scaffold for Tissue Regeneration Applications, Bull. Mater. Sci., 2015, 38(5), p 1367–1374.CrossRef R. Saidi, M.H. Fathi and H. Salimijazi, Fabrication and Characterization of Hydroxyapatite-Coated Forsterite Scaffold for Tissue Regeneration Applications, Bull. Mater. Sci., 2015, 38(5), p 1367–1374.CrossRef
53.
Zurück zum Zitat H. Ghomi, H. Edris and M.H. Fathi, Preparation of Nanostructure Hydroxyapatite Scaffold for Tissue Engineering Applications, J. Sol-Gel Sci. Technol., 2011, 58, p 642–650.CrossRef H. Ghomi, H. Edris and M.H. Fathi, Preparation of Nanostructure Hydroxyapatite Scaffold for Tissue Engineering Applications, J. Sol-Gel Sci. Technol., 2011, 58, p 642–650.CrossRef
54.
Zurück zum Zitat Z.H. Pan, H.P. Cai, P.P. Jiang and Q.Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, J. Polym. Res., 2006, 13, p 323–327.CrossRef Z.H. Pan, H.P. Cai, P.P. Jiang and Q.Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, J. Polym. Res., 2006, 13, p 323–327.CrossRef
55.
Zurück zum Zitat C. Gao, X. Hu and Y. Hong, Photografting of Poly ( Hydroxylethyl Acrylate) onto Porous Polyurethane Scaffolds to Improve Their Endothelial Cell Compatibility, J. Biomater. Sci. Polym. Ed., 2012, 14, p 937–950.CrossRef C. Gao, X. Hu and Y. Hong, Photografting of Poly ( Hydroxylethyl Acrylate) onto Porous Polyurethane Scaffolds to Improve Their Endothelial Cell Compatibility, J. Biomater. Sci. Polym. Ed., 2012, 14, p 937–950.CrossRef
56.
Zurück zum Zitat W.H. Lee, A.V. Zavgorodniy, C.Y. Loo and R. Rohanizadeh, Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release, J. Biomed. Mater. Res. Part A, 2012, 100A(6), p 1539–1549.CrossRef W.H. Lee, A.V. Zavgorodniy, C.Y. Loo and R. Rohanizadeh, Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release, J. Biomed. Mater. Res. Part A, 2012, 100A(6), p 1539–1549.CrossRef
57.
Zurück zum Zitat C.J. Wilson, R.E. Clegg, D. Ph, D.I. Leavesley, D. Ph, M.J. Pearcy and D. Ph, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review, Tissue Eng., 2005, 11(1), p 1–18.CrossRef C.J. Wilson, R.E. Clegg, D. Ph, D.I. Leavesley, D. Ph, M.J. Pearcy and D. Ph, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review, Tissue Eng., 2005, 11(1), p 1–18.CrossRef
Metadaten
Titel
Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite
verfasst von
Emon Barua
Apurba Das
Ashish B. Deoghare
D. Pamu
Payel Deb
Sumit Das Lala
Sushovan Chatterjee
Publikationsdatum
09.01.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 21/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07789-y

Weitere Artikel der Ausgabe 21/2023

Journal of Materials Engineering and Performance 21/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.