Skip to main content
Top
Published in: Wireless Networks 4/2022

24-02-2022 | Original Paper

Periodic data collection from mobile sensors with unpredictable motion along road networks

Authors: Sabah Tazeen, Dinesh Dash, Suddhasil De

Published in: Wireless Networks | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tracking mobile objects in road networks is one of the important applications of wireless sensor networks (WSNs). It includes road safety, smart transportation, vehicle safety, vehicle tracking, traffic monitoring, etc. In this work, we assume that the sensors are installed on vehicles which are moving on the road. These mobile sensors need to be tracked/visited periodically within a pre-defined time interval. In our scenario, the mobility or trajectory of the mobile sensors are unpredictable. In many applications nowadays, the mobile sensors have unpredictable mobility. In this paper, our aim is to collect data by visiting the mobile sensors periodically using fewer number of mobile sinks. The mobile sinks subsequently deliver the collected data to a stationary base station. Time-bound periodic data collection from the mobile sensors along with their unpredictable motion is even more challenging than the data collection from static sensors. Here, we propose a deterministic data gathering algorithm using the solution of Chinese Postman Problem. We measure the performance of the proposed solution. Due to non-availability of any existing solution, we have compared our algorithm with a heuristic algorithm and a variation of an existing solution. The experiment results show that our proposed data gathering algorithm performs well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahr, D., & Reinelt, G. (2006). A tabu search algorithm for the min-max k-chinese postman problem. Computers and Operations Research, 33, 3403–3422.MathSciNetCrossRef Ahr, D., & Reinelt, G. (2006). A tabu search algorithm for the min-max k-chinese postman problem. Computers and Operations Research, 33, 3403–3422.MathSciNetCrossRef
2.
go back to reference Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research Trends and Applications, 2(5), 483–502. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research Trends and Applications, 2(5), 483–502.
3.
go back to reference Cheng, C. F., & Yu, C. F. (2016). Data gathering in wireless sensor networks: A combine-tsp-reduce approach. IEEE Transactions on Vehicular Technology, 65(4), 2309–2324.CrossRef Cheng, C. F., & Yu, C. F. (2016). Data gathering in wireless sensor networks: A combine-tsp-reduce approach. IEEE Transactions on Vehicular Technology, 65(4), 2309–2324.CrossRef
4.
go back to reference Das, A., Mazumder, A., Sen, A., & Mitton, N.(2016). On mobile sensor data collection using data mules. In IEEE international conference on computing, networking and communications (ICNC) (pp. 1–7). Das, A., Mazumder, A., Sen, A., & Mitton, N.(2016). On mobile sensor data collection using data mules. In IEEE international conference on computing, networking and communications (ICNC) (pp. 1–7).
5.
go back to reference Das, A., Shirazipourazad, S., Hay, D., & Sen, A. (2019). Tracking of multiple targets using optimal number of uavs. IEEE Transactions On Aerospace And Electronic Systems, 55(4), 1769–1784.CrossRef Das, A., Shirazipourazad, S., Hay, D., & Sen, A. (2019). Tracking of multiple targets using optimal number of uavs. IEEE Transactions On Aerospace And Electronic Systems, 55(4), 1769–1784.CrossRef
6.
go back to reference Dash, D. (2018). Approximation algorithm for data gathering from mobile sensors. Elsevier Pervasive and Mobile Computing, 46, 34–48.CrossRef Dash, D. (2018). Approximation algorithm for data gathering from mobile sensors. Elsevier Pervasive and Mobile Computing, 46, 34–48.CrossRef
7.
go back to reference Dash, D. (2020). Approximation algorithms for road coverage using wireless sensor networks for moving objects monitoring. IEEE Transaction on Intelligent Transportation Systems, 21(11). Dash, D. (2020). Approximation algorithms for road coverage using wireless sensor networks for moving objects monitoring. IEEE Transaction on Intelligent Transportation Systems, 21(11).
8.
go back to reference Dash, D., Kumar, N., Ray, P. P., & Kumar, N. (2021). Reducing data gathering delay for energy efficient wireless data collection by jointly optimizing path and speed of mobile sink. IEEE Systems Journal, 15(3), 3173–3184.CrossRef Dash, D., Kumar, N., Ray, P. P., & Kumar, N. (2021). Reducing data gathering delay for energy efficient wireless data collection by jointly optimizing path and speed of mobile sink. IEEE Systems Journal, 15(3), 3173–3184.CrossRef
9.
go back to reference Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc routing problems, part i: The chinese postman problem. Operations Research, 43(2), 231–242.MathSciNetCrossRef Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc routing problems, part i: The chinese postman problem. Operations Research, 43(2), 231–242.MathSciNetCrossRef
10.
go back to reference Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient and reliable data gathering using internet of software-defined mobile sinks for wsns-based smart grid applications. Elsevier, Computer Standards & Interfaces, 66, 103–341. Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient and reliable data gathering using internet of software-defined mobile sinks for wsns-based smart grid applications. Elsevier, Computer Standards & Interfaces, 66, 103–341.
11.
go back to reference Ghosh, N. R. S., & Banerjee, I. (2016). Efficient polling point determination and physical model based throughput maximisation in wireless sensor network. In IEEE 24th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–5). Ghosh, N. R. S., & Banerjee, I. (2016). Efficient polling point determination and physical model based throughput maximisation in wireless sensor network. In IEEE 24th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–5).
12.
go back to reference Han, G., Guan, H., Wu, J., Chan, S., Shu, L., & Zhang, W. (2019). An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks. IEEE Systems Journal, 13(4). Han, G., Guan, H., Wu, J., Chan, S., Shu, L., & Zhang, W. (2019). An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks. IEEE Systems Journal, 13(4).
13.
go back to reference Huang, H., & Savkin, A. V. (2016). Optimal path planning for a vehicle collecting data in a wireless sensor network. In IEEE 35th Chinese control conference (CCC) (pp. 8460–8463). Huang, H., & Savkin, A. V. (2016). Optimal path planning for a vehicle collecting data in a wireless sensor network. In IEEE 35th Chinese control conference (CCC) (pp. 8460–8463).
14.
go back to reference Huang, H., & Savkin, A. V. (2017). An energy efficient approach for data collection in wireless sensor networks using public transportation vehicles. Elsevier, AEU-International Journal of Electronics and Communications, 75, 108–118. Huang, H., & Savkin, A. V. (2017). An energy efficient approach for data collection in wireless sensor networks using public transportation vehicles. Elsevier, AEU-International Journal of Electronics and Communications, 75, 108–118.
16.
go back to reference Jawaligi, S. S., & Biradar, G. S. (2017). Single mobile sink based energy efficiency and fast data gathering protocol for wireless sensor networks. Wireless Sensor Network, 9, 117–144.CrossRef Jawaligi, S. S., & Biradar, G. S. (2017). Single mobile sink based energy efficiency and fast data gathering protocol for wireless sensor networks. Wireless Sensor Network, 9, 117–144.CrossRef
17.
go back to reference Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. Elsevier, AEU-International Journal of Electronics and Communications, 73, 110–118. Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. Elsevier, AEU-International Journal of Electronics and Communications, 73, 110–118.
18.
go back to reference Konstantopoulos, C., Vathis, N., Pantziou, G., & Gavalas, D. (2018). Employing mobile elements for delay-constrained data gathering in wsns. Elsevier Computer Networks, 135, 108–131.CrossRef Konstantopoulos, C., Vathis, N., Pantziou, G., & Gavalas, D. (2018). Employing mobile elements for delay-constrained data gathering in wsns. Elsevier Computer Networks, 135, 108–131.CrossRef
19.
go back to reference Kumar, N., & Dash, D. (2018). Mobile data sink-based time-constrained data collection from mobile sensors: A heuristic approach. IET Wireless Sensor Systems, 8(3), 129–135.CrossRef Kumar, N., & Dash, D. (2018). Mobile data sink-based time-constrained data collection from mobile sensors: A heuristic approach. IET Wireless Sensor Systems, 8(3), 129–135.CrossRef
20.
go back to reference Lin, H., & Üstert, H. (2014). Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Transaction on Networking, 22(3), 903–916.CrossRef Lin, H., & Üstert, H. (2014). Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem. IEEE/ACM Transaction on Networking, 22(3), 903–916.CrossRef
22.
go back to reference Ma, C., Liang, W., & Zheng, M. (2017). Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm. Elsevier, Journal of Network and Computer Applications, 93, 76–90.CrossRef Ma, C., Liang, W., & Zheng, M. (2017). Delay constrained relay node placement in two-tiered wireless sensor networks: A set-covering-based algorithm. Elsevier, Journal of Network and Computer Applications, 93, 76–90.CrossRef
23.
go back to reference Ma, M., Yang, Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483.CrossRef Ma, M., Yang, Y., & Zhao, M. (2013). Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Transactions on Vehicular Technology, 62(4), 1472–1483.CrossRef
24.
go back to reference Sidorenko, G., Thunberg, J., Sjobergy, K., & Vinel, A. (2020). Vehicle-to-vehicle communication for safe and fuel-efficient platooning. In IEEE intelligent vehicles symposium (pp. 795–802). Sidorenko, G., Thunberg, J., Sjobergy, K., & Vinel, A. (2020). Vehicle-to-vehicle communication for safe and fuel-efficient platooning. In IEEE intelligent vehicles symposium (pp. 795–802).
25.
go back to reference Tao, L., Zhang, X. M., & Liang, W. (2019). Efficient algorithms for mobile sink aided data collection from dedicated and virtual aggregation nodes in energy harvesting wireless sensor networks. IEEE Transactions on Green Communications and Networking, 3(4), 1058–1071.CrossRef Tao, L., Zhang, X. M., & Liang, W. (2019). Efficient algorithms for mobile sink aided data collection from dedicated and virtual aggregation nodes in energy harvesting wireless sensor networks. IEEE Transactions on Green Communications and Networking, 3(4), 1058–1071.CrossRef
26.
go back to reference Tseng, Y., Wu, F., & Lai, W. (2013). Opportunistic data collection for disconnected wireless sensor networks by mobile mules. Ad Hoc Networks, Elsevier, 11(3), 1150–1164.CrossRef Tseng, Y., Wu, F., & Lai, W. (2013). Opportunistic data collection for disconnected wireless sensor networks by mobile mules. Ad Hoc Networks, Elsevier, 11(3), 1150–1164.CrossRef
27.
go back to reference Wang, J., Cao, Y., Li, B., Kim, H., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for wsns. Future Generation Computer Systems, 76, 452–457.CrossRef Wang, J., Cao, Y., Li, B., Kim, H., & Lee, S. (2017). Particle swarm optimization based clustering algorithm with mobile sink for wsns. Future Generation Computer Systems, 76, 452–457.CrossRef
28.
go back to reference Yin, X., Zhu, J., & Wu, Y. L. Z. (2015). Mobile data gathering with time-constraints in wireless sensor networks. In Springer international conference on WASA (pp. 696–705). Yin, X., Zhu, J., & Wu, Y. L. Z. (2015). Mobile data gathering with time-constraints in wireless sensor networks. In Springer international conference on WASA (pp. 696–705).
29.
go back to reference Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking(TON), 23(3), 810–823. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). Edal: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking(TON), 23(3), 810–823.
30.
go back to reference Yarinezhad, R., & Azizi, S. (2021). An energy-efficient routing protocol for the internet of things networks based on geographical location and link quality. Computer Networks, 193, 108–116.CrossRef Yarinezhad, R., & Azizi, S. (2021). An energy-efficient routing protocol for the internet of things networks based on geographical location and link quality. Computer Networks, 193, 108–116.CrossRef
31.
go back to reference Yarinezhad, R., & Hashemi, S. N. (2019). Distributed faulty node detection and recovery scheme for wireless sensor networks using cellular learning automata. Wireless Networks, 25(5), 2901–2917.CrossRef Yarinezhad, R., & Hashemi, S. N. (2019). Distributed faulty node detection and recovery scheme for wireless sensor networks using cellular learning automata. Wireless Networks, 25(5), 2901–2917.CrossRef
32.
go back to reference Yarinezhad, R., & Hashemi, S. N. (2020). Exact and approximate algorithms for clustering problem in wireless sensor networks. IET Communications, 14(4), 580–587.CrossRef Yarinezhad, R., & Hashemi, S. N. (2020). Exact and approximate algorithms for clustering problem in wireless sensor networks. IET Communications, 14(4), 580–587.CrossRef
33.
go back to reference Yarinezhad, R., & Sarabi, A. (2018). Reducing delay and energy consumption in wireless sensor networks by making virtual grid infrastructure and using mobile sink. Elsevier. AEU-International Journal of Electronics and Communications, 84, 144–152. Yarinezhad, R., & Sarabi, A. (2018). Reducing delay and energy consumption in wireless sensor networks by making virtual grid infrastructure and using mobile sink. Elsevier. AEU-International Journal of Electronics and Communications, 84, 144–152.
Metadata
Title
Periodic data collection from mobile sensors with unpredictable motion along road networks
Authors
Sabah Tazeen
Dinesh Dash
Suddhasil De
Publication date
24-02-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02915-z

Other articles of this Issue 4/2022

Wireless Networks 4/2022 Go to the issue