Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2013

01-10-2013

Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying

Authors: N. T. B. N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu, J. Baburao

Published in: Journal of Materials Engineering and Performance | Issue 10/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A multi-component nanocrystalline AlCrCuFeNiZn high entropy alloy with 12 nm crystallite size was successfully synthesized using high energy ball milling. The progress of solid solution formation during milling was analyzed using XRD. A major portion of the HEA is observed to be BCC in crystal structure after 30 h of milling. Thermal analysis showed that HEA powders exhibited exponential oxidation characteristics. Thermal analysis showed that low activation energy was sufficient to start recrystallization because of high energy stored in the milled powders. The crystallite size after consolidation is in nanocrystalline range due to the sluggish diffusion of atoms and nanotwinning. After consolidation, the crystallite size is around 79 nm. Samples sintered at 850 °C for 2 h exhibited high hardness values of 700 ± 15 HV1.0, major volume fraction of the phases are having FCC crystal structure along with a minor phase having BCC crystal structure. Due to positive enthalpy mixing of Cu with other elements, decomposition of BCC to new FCC phases occurs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Suryanarayana, Non-equilibrium Processing of Materials, 1st ed., Pergamon Materials Series, Oxford, 1999 C. Suryanarayana, Non-equilibrium Processing of Materials, 1st ed., Pergamon Materials Series, Oxford, 1999
2.
go back to reference J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum., 2007, 560, p 1–9CrossRef J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum., 2007, 560, p 1–9CrossRef
3.
go back to reference J.W. Yeh, S.K. Chen, S.J. Lin, J.T. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.T. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef
4.
go back to reference H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29 H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29
5.
go back to reference C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184CrossRef
6.
go back to reference S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163CrossRef S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163CrossRef
7.
go back to reference Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010CrossRef Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010CrossRef
8.
go back to reference T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef
9.
go back to reference V.D. Vikram, B.B. Panigrahi, M.M. Godkhindi, T.R. Rama Mohan, and P. Ramakrishnan, Dilatometry of Attrition Milled Nanocrystalline Titanium Powders, Mater. Res. Bull., 2006, 41(11), p 2111–2122CrossRef V.D. Vikram, B.B. Panigrahi, M.M. Godkhindi, T.R. Rama Mohan, and P. Ramakrishnan, Dilatometry of Attrition Milled Nanocrystalline Titanium Powders, Mater. Res. Bull., 2006, 41(11), p 2111–2122CrossRef
10.
go back to reference C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996 C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996
11.
go back to reference D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992CrossRef D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992CrossRef
12.
go back to reference A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789CrossRef A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789CrossRef
13.
go back to reference C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, Phases and Phase Stabilities of Fe3X Alloys (X = Al, As, Ge, In, Sb, Si, Sn, Zn) Prepared by Mechanical Alloying, J. Appl. Phys., 1994, 76(10), p 5961–5966CrossRef C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, Phases and Phase Stabilities of Fe3X Alloys (X = Al, As, Ge, In, Sb, Si, Sn, Zn) Prepared by Mechanical Alloying, J. Appl. Phys., 1994, 76(10), p 5961–5966CrossRef
14.
go back to reference ThH de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15, p 308–314CrossRef ThH de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15, p 308–314CrossRef
15.
go back to reference F.A. Mohamed, A Dislocation Model for the Minimum Grain Size Obtainable by Milling, Acta Mater., 2003, 51(14), p 4107–4119CrossRef F.A. Mohamed, A Dislocation Model for the Minimum Grain Size Obtainable by Milling, Acta Mater., 2003, 51(14), p 4107–4119CrossRef
16.
go back to reference J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45(1), p 113–124CrossRef J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45(1), p 113–124CrossRef
17.
go back to reference S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100−x-x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100−x-x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672CrossRef
18.
go back to reference Y.H. Zhao, H.W. Shang, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375CrossRef Y.H. Zhao, H.W. Shang, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375CrossRef
19.
go back to reference S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and Vijay Kumar Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10 wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and Vijay Kumar Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10 wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef
20.
go back to reference H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949CrossRef H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949CrossRef
21.
go back to reference K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38CrossRef K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38CrossRef
22.
go back to reference H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706CrossRef H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706CrossRef
23.
go back to reference L.W. Crane, P.J. Dynes, and D.H. Kaelble, Analysis of Curing Kinetics in Polymer Composites, J. Polym. Sci. Polym. Lett. Ed., 1973, 11, p 533–540CrossRef L.W. Crane, P.J. Dynes, and D.H. Kaelble, Analysis of Curing Kinetics in Polymer Composites, J. Polym. Sci. Polym. Lett. Ed., 1973, 11, p 533–540CrossRef
24.
go back to reference J.M. Criado and A. Ortega, Non-isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Mater., 1987, 35(7), p 1715–1721CrossRef J.M. Criado and A. Ortega, Non-isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Mater., 1987, 35(7), p 1715–1721CrossRef
25.
go back to reference B.B. Panigrahi, Sintering and Grain Growth Kinetics of Ball Milled Nanocrystalline Nickel Powder, Mater. Sci. Eng. A, 2007, 460–461, p 7–13 B.B. Panigrahi, Sintering and Grain Growth Kinetics of Ball Milled Nanocrystalline Nickel Powder, Mater. Sci. Eng. A, 2007, 460–461, p 7–13
26.
go back to reference J.R. Groza, Nanocrystalline Powder Consolidation Methods, Nanostructured Materials: Processing, Properties and Applications, 2nd ed., C.C. Koch, Ed., William Andrew Publishing, New York, 2002, p 173–217 J.R. Groza, Nanocrystalline Powder Consolidation Methods, Nanostructured Materials: Processing, Properties and Applications, 2nd ed., C.C. Koch, Ed., William Andrew Publishing, New York, 2002, p 173–217
27.
go back to reference M.S. Senthil Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh Babu, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406(2), p 165–168CrossRef M.S. Senthil Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh Babu, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406(2), p 165–168CrossRef
28.
go back to reference M.O. Humienik and J. Mozejko, Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates, Thermochim. Acta., 2000, 344(1–2), p 73–79CrossRef M.O. Humienik and J. Mozejko, Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates, Thermochim. Acta., 2000, 344(1–2), p 73–79CrossRef
29.
go back to reference A.A. Frost and R.G. Pearson, Kinetics and Mechanisms, 2nd ed., Wiley, New York, 1961 A.A. Frost and R.G. Pearson, Kinetics and Mechanisms, 2nd ed., Wiley, New York, 1961
30.
go back to reference K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, Mater. Sci. Eng. A., 2009, 508(1–2), p 214–219 K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, Mater. Sci. Eng. A., 2009, 508(1–2), p 214–219
31.
go back to reference B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126CrossRef B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126CrossRef
32.
go back to reference A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118CrossRef A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118CrossRef
33.
go back to reference H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism Mitigation and Monitoring, Woodhead Publishing, Cambridge, 2002CrossRef H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism Mitigation and Monitoring, Woodhead Publishing, Cambridge, 2002CrossRef
34.
go back to reference C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef
35.
go back to reference S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190CrossRef S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190CrossRef
36.
go back to reference T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700°C, J. Alloys Compd., 2010, 495(1), p 55–58CrossRef T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700°C, J. Alloys Compd., 2010, 495(1), p 55–58CrossRef
37.
go back to reference C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 2009, 486(1–2), p 427–435CrossRef C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 2009, 486(1–2), p 427–435CrossRef
38.
go back to reference E.E. Danaf, S.R. Kalidindi, and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in FCC Metals, Metall. Mater. Trans. A, 1999, 30(5), p 1223–1233CrossRef E.E. Danaf, S.R. Kalidindi, and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in FCC Metals, Metall. Mater. Trans. A, 1999, 30(5), p 1223–1233CrossRef
39.
go back to reference Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 211–213CrossRef Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 211–213CrossRef
Metadata
Title
Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying
Authors
N. T. B. N. Koundinya
C. Sajith Babu
K. Sivaprasad
P. Susila
N. Kishore Babu
J. Baburao
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2013
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0580-5

Other articles of this Issue 10/2013

Journal of Materials Engineering and Performance 10/2013 Go to the issue

Premium Partners