Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2013

01.10.2013

Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying

verfasst von: N. T. B. N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu, J. Baburao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A multi-component nanocrystalline AlCrCuFeNiZn high entropy alloy with 12 nm crystallite size was successfully synthesized using high energy ball milling. The progress of solid solution formation during milling was analyzed using XRD. A major portion of the HEA is observed to be BCC in crystal structure after 30 h of milling. Thermal analysis showed that HEA powders exhibited exponential oxidation characteristics. Thermal analysis showed that low activation energy was sufficient to start recrystallization because of high energy stored in the milled powders. The crystallite size after consolidation is in nanocrystalline range due to the sluggish diffusion of atoms and nanotwinning. After consolidation, the crystallite size is around 79 nm. Samples sintered at 850 °C for 2 h exhibited high hardness values of 700 ± 15 HV1.0, major volume fraction of the phases are having FCC crystal structure along with a minor phase having BCC crystal structure. Due to positive enthalpy mixing of Cu with other elements, decomposition of BCC to new FCC phases occurs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Suryanarayana, Non-equilibrium Processing of Materials, 1st ed., Pergamon Materials Series, Oxford, 1999 C. Suryanarayana, Non-equilibrium Processing of Materials, 1st ed., Pergamon Materials Series, Oxford, 1999
2.
Zurück zum Zitat J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum., 2007, 560, p 1–9CrossRef J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum., 2007, 560, p 1–9CrossRef
3.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.T. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.T. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303CrossRef
4.
Zurück zum Zitat H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29 H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29
5.
Zurück zum Zitat C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184CrossRef
6.
Zurück zum Zitat S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163CrossRef S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163CrossRef
7.
Zurück zum Zitat Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010CrossRef Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010CrossRef
8.
Zurück zum Zitat T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRef
9.
Zurück zum Zitat V.D. Vikram, B.B. Panigrahi, M.M. Godkhindi, T.R. Rama Mohan, and P. Ramakrishnan, Dilatometry of Attrition Milled Nanocrystalline Titanium Powders, Mater. Res. Bull., 2006, 41(11), p 2111–2122CrossRef V.D. Vikram, B.B. Panigrahi, M.M. Godkhindi, T.R. Rama Mohan, and P. Ramakrishnan, Dilatometry of Attrition Milled Nanocrystalline Titanium Powders, Mater. Res. Bull., 2006, 41(11), p 2111–2122CrossRef
10.
Zurück zum Zitat C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996 C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996
11.
Zurück zum Zitat D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992CrossRef D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992CrossRef
12.
Zurück zum Zitat A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789CrossRef A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789CrossRef
13.
Zurück zum Zitat C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, Phases and Phase Stabilities of Fe3X Alloys (X = Al, As, Ge, In, Sb, Si, Sn, Zn) Prepared by Mechanical Alloying, J. Appl. Phys., 1994, 76(10), p 5961–5966CrossRef C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, Phases and Phase Stabilities of Fe3X Alloys (X = Al, As, Ge, In, Sb, Si, Sn, Zn) Prepared by Mechanical Alloying, J. Appl. Phys., 1994, 76(10), p 5961–5966CrossRef
14.
Zurück zum Zitat ThH de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15, p 308–314CrossRef ThH de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15, p 308–314CrossRef
15.
Zurück zum Zitat F.A. Mohamed, A Dislocation Model for the Minimum Grain Size Obtainable by Milling, Acta Mater., 2003, 51(14), p 4107–4119CrossRef F.A. Mohamed, A Dislocation Model for the Minimum Grain Size Obtainable by Milling, Acta Mater., 2003, 51(14), p 4107–4119CrossRef
16.
Zurück zum Zitat J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45(1), p 113–124CrossRef J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45(1), p 113–124CrossRef
17.
Zurück zum Zitat S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100−x-x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100−x-x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672CrossRef
18.
Zurück zum Zitat Y.H. Zhao, H.W. Shang, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375CrossRef Y.H. Zhao, H.W. Shang, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375CrossRef
19.
Zurück zum Zitat S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and Vijay Kumar Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10 wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and Vijay Kumar Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10 wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRef
20.
Zurück zum Zitat H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949CrossRef H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949CrossRef
21.
Zurück zum Zitat K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38CrossRef K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38CrossRef
22.
Zurück zum Zitat H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706CrossRef H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706CrossRef
23.
Zurück zum Zitat L.W. Crane, P.J. Dynes, and D.H. Kaelble, Analysis of Curing Kinetics in Polymer Composites, J. Polym. Sci. Polym. Lett. Ed., 1973, 11, p 533–540CrossRef L.W. Crane, P.J. Dynes, and D.H. Kaelble, Analysis of Curing Kinetics in Polymer Composites, J. Polym. Sci. Polym. Lett. Ed., 1973, 11, p 533–540CrossRef
24.
Zurück zum Zitat J.M. Criado and A. Ortega, Non-isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Mater., 1987, 35(7), p 1715–1721CrossRef J.M. Criado and A. Ortega, Non-isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Mater., 1987, 35(7), p 1715–1721CrossRef
25.
Zurück zum Zitat B.B. Panigrahi, Sintering and Grain Growth Kinetics of Ball Milled Nanocrystalline Nickel Powder, Mater. Sci. Eng. A, 2007, 460–461, p 7–13 B.B. Panigrahi, Sintering and Grain Growth Kinetics of Ball Milled Nanocrystalline Nickel Powder, Mater. Sci. Eng. A, 2007, 460–461, p 7–13
26.
Zurück zum Zitat J.R. Groza, Nanocrystalline Powder Consolidation Methods, Nanostructured Materials: Processing, Properties and Applications, 2nd ed., C.C. Koch, Ed., William Andrew Publishing, New York, 2002, p 173–217 J.R. Groza, Nanocrystalline Powder Consolidation Methods, Nanostructured Materials: Processing, Properties and Applications, 2nd ed., C.C. Koch, Ed., William Andrew Publishing, New York, 2002, p 173–217
27.
Zurück zum Zitat M.S. Senthil Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh Babu, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406(2), p 165–168CrossRef M.S. Senthil Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh Babu, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406(2), p 165–168CrossRef
28.
Zurück zum Zitat M.O. Humienik and J. Mozejko, Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates, Thermochim. Acta., 2000, 344(1–2), p 73–79CrossRef M.O. Humienik and J. Mozejko, Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates, Thermochim. Acta., 2000, 344(1–2), p 73–79CrossRef
29.
Zurück zum Zitat A.A. Frost and R.G. Pearson, Kinetics and Mechanisms, 2nd ed., Wiley, New York, 1961 A.A. Frost and R.G. Pearson, Kinetics and Mechanisms, 2nd ed., Wiley, New York, 1961
30.
Zurück zum Zitat K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, Mater. Sci. Eng. A., 2009, 508(1–2), p 214–219 K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, Mater. Sci. Eng. A., 2009, 508(1–2), p 214–219
31.
Zurück zum Zitat B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126CrossRef B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126CrossRef
32.
Zurück zum Zitat A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118CrossRef A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118CrossRef
33.
Zurück zum Zitat H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism Mitigation and Monitoring, Woodhead Publishing, Cambridge, 2002CrossRef H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism Mitigation and Monitoring, Woodhead Publishing, Cambridge, 2002CrossRef
34.
Zurück zum Zitat C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294CrossRef
35.
Zurück zum Zitat S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190CrossRef S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190CrossRef
36.
Zurück zum Zitat T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700°C, J. Alloys Compd., 2010, 495(1), p 55–58CrossRef T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700°C, J. Alloys Compd., 2010, 495(1), p 55–58CrossRef
37.
Zurück zum Zitat C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 2009, 486(1–2), p 427–435CrossRef C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 2009, 486(1–2), p 427–435CrossRef
38.
Zurück zum Zitat E.E. Danaf, S.R. Kalidindi, and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in FCC Metals, Metall. Mater. Trans. A, 1999, 30(5), p 1223–1233CrossRef E.E. Danaf, S.R. Kalidindi, and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in FCC Metals, Metall. Mater. Trans. A, 1999, 30(5), p 1223–1233CrossRef
39.
Zurück zum Zitat Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 211–213CrossRef Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 211–213CrossRef
Metadaten
Titel
Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying
verfasst von
N. T. B. N. Koundinya
C. Sajith Babu
K. Sivaprasad
P. Susila
N. Kishore Babu
J. Baburao
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2013
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0580-5

Weitere Artikel der Ausgabe 10/2013

Journal of Materials Engineering and Performance 10/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.