Skip to main content
Top
Published in: Cellulose 6/2007

01-12-2007

Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers

Authors: Qingzheng Cheng, Siqun Wang, Timothy G. Rials, Seung-Hwan Lee

Published in: Cellulose | Issue 6/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Natural fibers in micro and nano scales may be a potential alternative for man-made fibers because of the comparable mechanical properties to those of glass, carbon, and aramid fibers. Cellulose fibril and fibril aggregate are generally prepared by physical treatments, e.g., high-pressure homogenizer, or chemical treatments, e.g., acid hydrolysis. In this study, fibril aggregates were generated from a regenerated cellulose fiber by a novel mechanical treatment. The geometrical characteristics of the fibers and the fibril aggregates were investigated using scanning electron microscopy (SEM) and polarized light microscopy (PLM), and its crystallinity was investigated by wide angle X-ray diffraction (WAXD). The degree of fibrillation of the fibers was indirectly evaluated by water retention value (WRV). Nano-biocomposites reinforced with fibril aggregates were prepared by film casting and compression molding and evaluated by tensile test. The morphological characteristics of the nanocomposites were investigated with SEM and PLM. As reference, commercial microfibrillated cellulose was also used to reinforce biodegradable polymer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference ASTM D (1708–2002) Standard test method for tensile properties of plastics by use of microtensile specimens ASTM D (1708–2002) Standard test method for tensile properties of plastics by use of microtensile specimens
go back to reference Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054CrossRef
go back to reference Berglund L (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal L (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, pp 807–832 Berglund L (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal L (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, pp 807–832
go back to reference Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRef
go back to reference Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107CrossRef
go back to reference Chakraborty A, Sain M, Kortschot M (2006a) Cellulose microfibers as reinforcing agents for structural materials, cellulose nanocomposites: processing, characterization, and properties. Acs Symposium Series, pp 169–186 Chakraborty A, Sain M, Kortschot M (2006a) Cellulose microfibers as reinforcing agents for structural materials, cellulose nanocomposites: processing, characterization, and properties. Acs Symposium Series, pp 169–186
go back to reference Chakraborty A, Sain M, Kortschot M (2006b) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58CrossRef Chakraborty A, Sain M, Kortschot M (2006b) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58CrossRef
go back to reference Cheng Q, Wang S, Zhou D, Zhang Y, Rials T (2007) Lyocell-derived cellulose fibril and its biodegradable nanocomposite. J Nanjing For Univ 31(4):21–26 Cheng Q, Wang S, Zhou D, Zhang Y, Rials T (2007) Lyocell-derived cellulose fibril and its biodegradable nanocomposite. J Nanjing For Univ 31(4):21–26
go back to reference Choi YJ, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639CrossRef Choi YJ, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639CrossRef
go back to reference Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRef Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRef
go back to reference Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef
go back to reference Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207CrossRef Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207CrossRef
go back to reference Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef
go back to reference Ganster J, Fink HP (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280CrossRef Ganster J, Fink HP (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280CrossRef
go back to reference George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef
go back to reference Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813
go back to reference Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787CrossRef Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787CrossRef
go back to reference Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRef
go back to reference Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys a-Mater Sci Process 80(1):155–159CrossRef Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys a-Mater Sci Process 80(1):155–159CrossRef
go back to reference Peng SJ, Shao HL, Hu XC (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90(7):1941–1947CrossRef Peng SJ, Shao HL, Hu XC (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90(7):1941–1947CrossRef
go back to reference Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660CrossRef Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660CrossRef
go back to reference Samir M, Alloin F, Sanchez JY, Dufresne A (2004) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844CrossRef Samir M, Alloin F, Sanchez JY, Dufresne A (2004) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844CrossRef
go back to reference Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061CrossRef
go back to reference Taniguchi T (1996) Microfibrillation of natural fibrous materials. J Soc Mat Sci Japan 45(4):472–473 Taniguchi T (1996) Microfibrillation of natural fibrous materials. J Soc Mat Sci Japan 45(4):472–473
go back to reference Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827
go back to reference Wang S, Cheng Q (2007) A novel method to isolate fibrils from cellulose fibers by high intensity ultrasonication (in preparation) Wang S, Cheng Q (2007) A novel method to isolate fibrils from cellulose fibers by high intensity ultrasonication (in preparation)
go back to reference Woodings C (2000) Regenerated cellulose fibers. Woodhead publishing limited, Cambridge, England Woodings C (2000) Regenerated cellulose fibers. Woodhead publishing limited, Cambridge, England
go back to reference Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef
Metadata
Title
Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers
Authors
Qingzheng Cheng
Siqun Wang
Timothy G. Rials
Seung-Hwan Lee
Publication date
01-12-2007
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2007
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-007-9141-0

Other articles of this Issue 6/2007

Cellulose 6/2007 Go to the issue