Skip to main content
Top
Published in: Polymer Science, Series D 4/2022

01-12-2022

Plant Fibers and the Application of Polymer-Composite Materials Based on Them: A Review

Authors: D. V. Chashchilov, E. V. Atyasova, A. N. Blaznov

Published in: Polymer Science, Series D | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review provides information on the most common fibers extracted from plant lignocellulosic raw materials. Plant fibers are used as a fibrous reinforcing filler of polymer composite materials (PCMs) on various polymer matrices. The main problems in using such materials are shown—ensuring a reliable connection between the reinforcing filler and the polymer matrix, the need for protection from moisture, and instability of the mechanical properties of a fibrous reinforcing filler. The most common areas of application of PCMs reinforced with plant fibers are in the automotive industry and production of building materials. It is promising to create functional materials based on such PCM groups.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K. M. F. Hasan, P. G. Horvath, and T. Alpar, “Potential natural fiber polymeric nanobiocomposites: A review,” Polymers 12, 1072 (2020).CrossRef K. M. F. Hasan, P. G. Horvath, and T. Alpar, “Potential natural fiber polymeric nanobiocomposites: A review,” Polymers 12, 1072 (2020).CrossRef
2.
go back to reference S. Z. Rogovina, E. B. Prut, and A. A. Berlin, “Composite materials based on synthetic polymers reinforced with natural fibers,” Polym. Sci., Ser. A 61, 417–438 (2019).CrossRef S. Z. Rogovina, E. B. Prut, and A. A. Berlin, “Composite materials based on synthetic polymers reinforced with natural fibers,” Polym. Sci., Ser. A 61, 417–438 (2019).CrossRef
3.
go back to reference V. V. Abramov and N. M. Chalaya, “Biopolymers: Rescue or utopia?,” Plast. Massy 5–6, 159–172 (2019). V. V. Abramov and N. M. Chalaya, “Biopolymers: Rescue or utopia?,” Plast. Massy 56, 159–172 (2019).
4.
go back to reference T. A. Gorshkova, P. V. Mikshina, O. P. Guryanov, et al. “Formation of plant cell wall supramolecular structure,” Biochemistry 75, 196–213 (2010). T. A. Gorshkova, P. V. Mikshina, O. P. Guryanov, et al. “Formation of plant cell wall supramolecular structure,” Biochemistry 75, 196–213 (2010).
5.
go back to reference T. G. Volova, “Modern biomaterials: Global trends, and the place and role of microbe polyhydroxyalkanoates,” Zh. Sib. Fed. Univ. Ser. Biolog. 7, 103–133 (2014).CrossRef T. G. Volova, “Modern biomaterials: Global trends, and the place and role of microbe polyhydroxyalkanoates,” Zh. Sib. Fed. Univ. Ser. Biolog. 7, 103–133 (2014).CrossRef
6.
go back to reference Biodegradable Polymer Mixtures and Polymers from Renewable Resources, Ed. by Yu. Long (Wiley, 2008; Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2013). Biodegradable Polymer Mixtures and Polymers from Renewable Resources, Ed. by Yu. Long (Wiley, 2008; Nauchnye Osnovy i Tekhnologii, St. Petersburg, 2013).
7.
go back to reference P. Peças, H. Carvalho, H. Salman, et al., “Natural fibre composites and their applications: A review,” J. Compos. Sci. 2, 66 (2018).CrossRef P. Peças, H. Carvalho, H. Salman, et al., “Natural fibre composites and their applications: A review,” J. Compos. Sci. 2, 66 (2018).CrossRef
8.
go back to reference E. R. P. Keijsers, G. Yilmaz, and J. E. G. Van Dam, “The cellulose resource matrix,” Carbohydrate Polym. 93, 9–21 (2013).CrossRef E. R. P. Keijsers, G. Yilmaz, and J. E. G. Van Dam, “The cellulose resource matrix,” Carbohydrate Polym. 93, 9–21 (2013).CrossRef
9.
go back to reference Vahan Agopyan and J. M. Vanderley, “Sisal and coir vegetable fibres as well as those obtained from disintegrated newsprint found to be the most suitable fibres for building purposes,” Build. Res. Inf. 20, 233–235 (1992).CrossRef Vahan Agopyan and J. M. Vanderley, “Sisal and coir vegetable fibres as well as those obtained from disintegrated newsprint found to be the most suitable fibres for building purposes,” Build. Res. Inf. 20, 233–235 (1992).CrossRef
10.
go back to reference M. V. Kiselev, Simulation of the Structure of Flax Comber Fiber and the Process of Division of Flax Complexes (Izd. Kostroma State Tekh. Univ., Kostroma, 2009) [in Russian]. M. V. Kiselev, Simulation of the Structure of Flax Comber Fiber and the Process of Division of Flax Complexes (Izd. Kostroma State Tekh. Univ., Kostroma, 2009) [in Russian].
11.
go back to reference H. Bos, “The potential of flax fibres as reinforcement for composite materials,” Technische Universiteit Eindhoven (Eindhoven, 2004), p. 192. H. Bos, “The potential of flax fibres as reinforcement for composite materials,” Technische Universiteit Eindhoven (Eindhoven, 2004), p. 192.
12.
go back to reference A. S. Kolosova, M.K. Sokol’skaya, I. A. Vitkalova, et al., “Modern polymer composite materials and their applications,” Mezhd. Zh. Prikl. Fund. Issled., No. 5, 245–256 (2018). A. S. Kolosova, M.K. Sokol’skaya, I. A. Vitkalova, et al., “Modern polymer composite materials and their applications,” Mezhd. Zh. Prikl. Fund. Issled., No. 5, 245–256 (2018).
13.
go back to reference D. V. Sevastayanov, I. V. Sumubalov, M. I. Daskovskii, et al., “Polymer biocomposites on the basis of biodegradable bonders reinforced with natural fibers (a review),” Aviats. Mater. Tekhnol., No. 4, 42–50 (2017). D. V. Sevastayanov, I. V. Sumubalov, M. I. Daskovskii, et al., “Polymer biocomposites on the basis of biodegradable bonders reinforced with natural fibers (a review),” Aviats. Mater. Tekhnol., No. 4, 42–50 (2017).
14.
go back to reference W. Liu, T. Chen T., M.-en Fei, et al., “Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition,” Compos. Part B 171, 87–95 (2019).CrossRef W. Liu, T. Chen T., M.-en Fei, et al., “Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition,” Compos. Part B 171, 87–95 (2019).CrossRef
15.
go back to reference A. García, A. Gandini, J. Labidi, et al., “Industrial and crop wastes: A new source for nanocellulose biorefinery,” Industrial Crops and Products 93, 26–38 (2016).CrossRef A. García, A. Gandini, J. Labidi, et al., “Industrial and crop wastes: A new source for nanocellulose biorefinery,” Industrial Crops and Products 93, 26–38 (2016).CrossRef
16.
go back to reference S. A. Ugryumov, Doctoral Dissertation in Engineering (Moscow, 2009). S. A. Ugryumov, Doctoral Dissertation in Engineering (Moscow, 2009).
17.
go back to reference K. Charlet, J. P. Jernot, S. Eve, et al., “Multi-scale morphological characterisation of flax: From the stem to the fibrils,” Carbohydrate Polym. 82, 54–61 (2010).CrossRef K. Charlet, J. P. Jernot, S. Eve, et al., “Multi-scale morphological characterisation of flax: From the stem to the fibrils,” Carbohydrate Polym. 82, 54–61 (2010).CrossRef
18.
go back to reference D. V. Chashchilov and N. V. Bychin, “Studies of the interphase layer of retted natural hemp fibers of nettle and the epoxy matrix in a polymer composite material,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 1, 77–84 (2021). D. V. Chashchilov and N. V. Bychin, “Studies of the interphase layer of retted natural hemp fibers of nettle and the epoxy matrix in a polymer composite material,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 1, 77–84 (2021).
19.
go back to reference K.-T. Lau, P.-Y. Hung, M.-H. Zhu, et al., “Properties of natural fibre composites for structural engineering applications,” Comp. Part B 136, 222–233 (2018).CrossRef K.-T. Lau, P.-Y. Hung, M.-H. Zhu, et al., “Properties of natural fibre composites for structural engineering applications,” Comp. Part B 136, 222–233 (2018).CrossRef
20.
go back to reference S. Yu. Kapustyanchik and V. N. Yakimenko, “Silver grass—a plant promising as source of raw material, power, and fitomelioration (literature review),” Pochvy i Okruzhayushchaya Sreda 3, e126 (2020). S. Yu. Kapustyanchik and V. N. Yakimenko, “Silver grass—a plant promising as source of raw material, power, and fitomelioration (literature review),” Pochvy i Okruzhayushchaya Sreda 3, e126 (2020).
21.
go back to reference M. N. Denisova, I. N. Pavlov, V. V. Budaeva, and G. V. Sakovich, “Structural and dimensional characteristics of the fibers of hydrotropic cellulose,” Polzunovskii Vestnik 1, 83–87 (2015). M. N. Denisova, I. N. Pavlov, V. V. Budaeva, and G. V. Sakovich, “Structural and dimensional characteristics of the fibers of hydrotropic cellulose,” Polzunovskii Vestnik 1, 83–87 (2015).
22.
go back to reference F. Debiagi, P. C. S.Faria-Tischer, and S. Mali, “A Green approach based on reactive extrusion to produce nanofibrillated cellulose from oat hull,” Waste Biomass Valor. 12, 1051—1060 (2021).CrossRef F. Debiagi, P. C. S.Faria-Tischer, and S. Mali, “A Green approach based on reactive extrusion to produce nanofibrillated cellulose from oat hull,” Waste Biomass Valor. 12, 1051—1060 (2021).CrossRef
23.
go back to reference D. V. Chashchilov and N. V. Bychin, “Comparative studies of the morphology and geometric characteristics of the natural fibers obtained by decortication of the stubble chaff of fall rye and triticale,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 6, 198–204 (2020). D. V. Chashchilov and N. V. Bychin, “Comparative studies of the morphology and geometric characteristics of the natural fibers obtained by decortication of the stubble chaff of fall rye and triticale,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 6, 198–204 (2020).
24.
go back to reference P. Madhu, M. R.Sanjay, P. Senthamaraikannan, et al., “A review on synthesis and characterization of commercially available natural fibers: Part I,” J. Nat. Fibers 16, 1132–1144 (2019).CrossRef P. Madhu, M. R.Sanjay, P. Senthamaraikannan, et al., “A review on synthesis and characterization of commercially available natural fibers: Part I,” J. Nat. Fibers 16, 1132–1144 (2019).CrossRef
25.
go back to reference V. Chaudhary and F. Ahmad, “A review on plant fiber reinforced thermoset polymers for structural and frictional composites,” Polym. Testing 91, 106792 (2020).CrossRef V. Chaudhary and F. Ahmad, “A review on plant fiber reinforced thermoset polymers for structural and frictional composites,” Polym. Testing 91, 106792 (2020).CrossRef
26.
go back to reference K. I. Donetskii and A. V. Khrul’kov, “Application of natural fibers in production of polymer composite materials,” Trudy Vseross. Inst. Aviats. Mater. 2, 50–55 (2015). K. I. Donetskii and A. V. Khrul’kov, “Application of natural fibers in production of polymer composite materials,” Trudy Vseross. Inst. Aviats. Mater. 2, 50–55 (2015).
27.
go back to reference V. V. Zhivetin and L. N. Ginzburg, Seed Flax and its Complex Development (Tsent. Nauch. Issled. Inst. Kompleks. Avtomatiz. Legkoi Prom-sti, Moscow, 2000) [in Russian]. V. V. Zhivetin and L. N. Ginzburg, Seed Flax and its Complex Development (Tsent. Nauch. Issled. Inst. Kompleks. Avtomatiz. Legkoi Prom-sti, Moscow, 2000) [in Russian].
28.
go back to reference Y. Zhou, M. Fan, and L. Chen, “Interface and bonding mechanisms of plant fibre composites: An overview,” Compos. Part B 101, 31–45 (2016).CrossRef Y. Zhou, M. Fan, and L. Chen, “Interface and bonding mechanisms of plant fibre composites: An overview,” Compos. Part B 101, 31–45 (2016).CrossRef
29.
go back to reference M. Pedersen and A. S. Meyer, “Lignocellulose pretreatment severity–relating pH to biomatrix opening,” New Biotechnol. 27, 739–750 (2010).CrossRef M. Pedersen and A. S. Meyer, “Lignocellulose pretreatment severity–relating pH to biomatrix opening,” New Biotechnol. 27, 739–750 (2010).CrossRef
30.
go back to reference D. Haldar and M. K. Purkait, “A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements,” Chemosphere 264, 128523 (2021).CrossRef D. Haldar and M. K. Purkait, “A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements,” Chemosphere 264, 128523 (2021).CrossRef
31.
go back to reference J. Schuermann, T. Huber, and M. P. Staiger, “Prepreg style fabrication of all-cellulose composites,” in ICCM – The 19th International Conference on Composite Materials, Montreal, Canada, 2013, pp. 5626–5634. J. Schuermann, T. Huber, and M. P. Staiger, “Prepreg style fabrication of all-cellulose composites,” in ICCM – The 19th International Conference on Composite Materials, Montreal, Canada, 2013, pp. 5626–5634.
32.
go back to reference D. V. Sevastyanov, M. S. Doriomedov, M. I. Daskovskii, et al., “Self-reinforced polymer composites: Classification, production, mechanical properties, and application (a review),” Trudy Vseross. Inst. Aviats. Mater. No. 4, 42–50 (2017). D. V. Sevastyanov, M. S. Doriomedov, M. I. Daskovskii, et al., “Self-reinforced polymer composites: Classification, production, mechanical properties, and application (a review),” Trudy Vseross. Inst. Aviats. Mater. No. 4, 42–50 (2017).
33.
go back to reference B. Aaliya, K. V. Sunooj, and M. Lackner, “Biopolymer composites: A review,” Int. J. Biobased Plastics 3, 40–84 (2021).CrossRef B. Aaliya, K. V. Sunooj, and M. Lackner, “Biopolymer composites: A review,” Int. J. Biobased Plastics 3, 40–84 (2021).CrossRef
34.
go back to reference E. V. Atyasova and A. N. Blaznov, “Hybrid polymer composite materials. Part 1. Composition and properties,” Vse Mater. Entsikloped. Spravochnik, No. 11, 23–31 (2019). E. V. Atyasova and A. N. Blaznov, “Hybrid polymer composite materials. Part 1. Composition and properties,” Vse Mater. Entsikloped. Spravochnik, No. 11, 23–31 (2019).
35.
go back to reference E. V. Atyasova and A. N. Blaznov, “Hybrid Polymer Composite Materials. Part 2. Production Technologies,” Vse Mater. Entsikloped. Spravochnik, No. 1, 8–13. E. V. Atyasova and A. N. Blaznov, “Hybrid Polymer Composite Materials. Part 2. Production Technologies,” Vse Mater. Entsikloped. Spravochnik, No. 1, 8–13.
36.
go back to reference M. E. Zhurkovskii, Z. G. Sakoshev, A. N. Blaznov, et al., “Studies of the mechanical properties of winding hybrid polymer materials,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 3, 39–43 (2018). M. E. Zhurkovskii, Z. G. Sakoshev, A. N. Blaznov, et al., “Studies of the mechanical properties of winding hybrid polymer materials,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 3, 39–43 (2018).
37.
go back to reference M. E. Zhurkovskii, V. V. Samoilenko, V. V. Firsov, A. N. Blaznov, and E. V. Atyasova, “Studies of strength properties of hybrid materials on the basis of carbon and glass fabrics,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 2, 21–27 (2018). M. E. Zhurkovskii, V. V. Samoilenko, V. V. Firsov, A. N. Blaznov, and E. V. Atyasova, “Studies of strength properties of hybrid materials on the basis of carbon and glass fabrics,” Yuzhno-Sibirskii Nauchnyi Vestnik, No. 2, 21–27 (2018).
38.
go back to reference A. Bourmaud, D. U. Shah, J. Beaugrand, et al., “Property changes in plant fibres during the processing of bio-based composites,” Ind. Crops and Prod. 154, 112705 (2020).CrossRef A. Bourmaud, D. U. Shah, J. Beaugrand, et al., “Property changes in plant fibres during the processing of bio-based composites,” Ind. Crops and Prod. 154, 112705 (2020).CrossRef
39.
go back to reference M. I. Daskovskii, M. S. Doriomedov, D. V. Sevastyanov, et al., “Biopolymer composites: Prospects for application (a review),” Aviats. Mater.Tekhnol., No. 3, 74—80 (2017). M. I. Daskovskii, M. S. Doriomedov, D. V. Sevastyanov, et al., “Biopolymer composites: Prospects for application (a review),” Aviats. Mater.Tekhnol., No. 3, 74—80 (2017).
40.
go back to reference Timber-Polymer Composites (Naychnye Osnovy i Tehnologii, 2010). Timber-Polymer Composites (Naychnye Osnovy i Tehnologii, 2010).
41.
go back to reference S. A. Koksharov, “Innovative flax materials for biopolymer composites,” Fiz. Voloknistykh Mater., No. 1, 161–167 (2017). S. A. Koksharov, “Innovative flax materials for biopolymer composites,” Fiz. Voloknistykh Mater., No. 1, 161–167 (2017).
42.
go back to reference . Yu. Timofeeva and A. L. Strazhnikov, “Prospects for application of polymer composite materials on the basis of natural fibers in aircraft engineering,” Novye Mater. Tekhnol. Mashinostr. 16, 76–79 (2018) . Yu. Timofeeva and A. L. Strazhnikov, “Prospects for application of polymer composite materials on the basis of natural fibers in aircraft engineering,” Novye Mater. Tekhnol. Mashinostr. 16, 76–79 (2018)
43.
go back to reference K. I. Donetskii and A. V. Khrul’kov, “Concepts of “green” chemistry in promising technologies for manufacture of products from polymer composite materials,” Aviats. Mater. Tekhnol., No. 2, 24–28 (2014) K. I. Donetskii and A. V. Khrul’kov, “Concepts of “green” chemistry in promising technologies for manufacture of products from polymer composite materials,” Aviats. Mater. Tekhnol., No. 2, 24–28 (2014)
44.
go back to reference S. O. Amiandamhen, M. Meincken, and L. Tyhoda, “Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposites materials,” Fibers and Polymers 21, 677–689 (2020).CrossRef S. O. Amiandamhen, M. Meincken, and L. Tyhoda, “Natural fibre modification and its influence on fibre-matrix interfacial properties in biocomposites materials,” Fibers and Polymers 21, 677–689 (2020).CrossRef
45.
go back to reference I. Yu. Potoroko, A. V. Malinin, A. V. Tsaturov, et al., “Biodegradable materials on the basis of vegetable polysaccharides for packing foodstuffs. Part 1,” Vestnik Yuzhno-Ural’skogo Gos. Univ. Ser. “Pishchevye Biotekhnologii” 8, 21–28 (2020). I. Yu. Potoroko, A. V. Malinin, A. V. Tsaturov, et al., “Biodegradable materials on the basis of vegetable polysaccharides for packing foodstuffs. Part 1,” Vestnik Yuzhno-Ural’skogo Gos. Univ. Ser. “Pishchevye Biotekhnologii” 8, 21–28 (2020).
46.
go back to reference P. N. Timoshkov and D. I. Kogan, “Modern technologies for the production of next-generation polymer composite materials,” Trudy Vseross. Inst. Aviats. Mater., No. 4 (2013). P. N. Timoshkov and D. I. Kogan, “Modern technologies for the production of next-generation polymer composite materials,” Trudy Vseross. Inst. Aviats. Mater., No. 4 (2013).
Metadata
Title
Plant Fibers and the Application of Polymer-Composite Materials Based on Them: A Review
Authors
D. V. Chashchilov
E. V. Atyasova
A. N. Blaznov
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 4/2022
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421222040050

Other articles of this Issue 4/2022

Polymer Science, Series D 4/2022 Go to the issue

Premium Partners