Skip to main content
Top
Published in: Polymer Science, Series D 4/2022

01-12-2022

Carbon Plastics in the Design of Space-Technology Products (Review)

Authors: M. I. Valueva, A. A. Evdokimov, O. N. Klimenko, A. V. Nacharkina

Published in: Polymer Science, Series D | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This review describes the history, current condition, and prospects of the application of polymer-composite materials in the design of space-technology products. Special attention has been paid to the application of materials based on continuous carbon-reinforcing fillers. Russian and foreign sources and patents for inventions are considered. Taking into account global experience, the prospects of designing structures using high-temperature carbon plastics are shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference “Specific rigidity, specific strength, low heat expansion, thermal conductivity, moisture absorption.” https://www.torayca.com/en/activity/act_004.html. “Specific rigidity, specific strength, low heat expansion, thermal conductivity, moisture absorption.” https://​www.​torayca.​com/​en/​activity/​act_​004.​html.​
2.
go back to reference N. D. Semkin, A. M. Telegin, and M. P. Kalaev, “Space and its influence on the elements of spacecraft design,” Samara Gos. Aerokosm. Univ. im Koroleva (2013). N. D. Semkin, A. M. Telegin, and M. P. Kalaev, “Space and its influence on the elements of spacecraft design,” Samara Gos. Aerokosm. Univ. im Koroleva (2013).
4.
go back to reference E. N. Kablov, Trends and Landmarks of Russia’s Innovative Development 3rd ed. (Vseross. Inst. Aviats. Mater., Moscow, 2015). E. N. Kablov, Trends and Landmarks of Russia’s Innovative Development 3rd ed. (Vseross. Inst. Aviats. Mater., Moscow, 2015).
5.
go back to reference E. N. Kablov, “Composites: Today and tomorrow” Metally Evrazii, No. 1, 36–39 (2015). E. N. Kablov, “Composites: Today and tomorrow” Metally Evrazii, No. 1, 36–39 (2015).
6.
go back to reference E. N. Kablov and V. O. Startsev, “System analysis of the influence of climate on mechanical properties of composite materials based on Russian and foreign sources of information (a review),” Aviats. Mater. Tekhnol., No. 2, 47–58 (2018). E. N. Kablov and V. O. Startsev, “System analysis of the influence of climate on mechanical properties of composite materials based on Russian and foreign sources of information (a review),” Aviats. Mater. Tekhnol., No. 2, 47–58 (2018).
7.
go back to reference E. Sh. Imametdinov and M. I. Valueva, “Composite materials for piston engines Aviats. Mater. Tekhnol., No. 3, 19–28 (2020). E. Sh. Imametdinov and M. I. Valueva, “Composite materials for piston engines Aviats. Mater. Tekhnol., No. 3, 19–28 (2020).
8.
go back to reference M. I. Valueva, I. V. Zelenina, K. S. Mishuro, et al., “Review of publications of the development of blades made of polymer composite materials for aircraft engine fan,” Vestn. Mashinostr., No. 2, 39–41 (2019). M. I. Valueva, I. V. Zelenina, K. S. Mishuro, et al., “Review of publications of the development of blades made of polymer composite materials for aircraft engine fan,” Vestn. Mashinostr., No. 2, 39–41 (2019).
9.
go back to reference A. E. Raskutin, “Next-generation Russian polymer composite materials, their mastering and implementation in advances constructs under design,” Aviats. Mater. Tekhnol., No. S, 349–367 (2017). A. E. Raskutin, “Next-generation Russian polymer composite materials, their mastering and implementation in advances constructs under design,” Aviats. Mater. Tekhnol., No. S, 349–367 (2017).
10.
go back to reference Yu. A. Mikhailin, Fiber Polymer Composite Materials in Engineering (Nauchyne Osnovy i Tekhnol., St. Petersburg, 2013). Yu. A. Mikhailin, Fiber Polymer Composite Materials in Engineering (Nauchyne Osnovy i Tekhnol., St. Petersburg, 2013).
11.
go back to reference M. I. Valueva, I. V. Zelenina, K. R. Akhmadieva, et al., “VIAM’s development in the area of high-temperature carbon plastics”, in Proceedings of 4th All-Russian Conference “Role of Basic Research in the Development of Materials, Technologies, and Directions of their Utilization to 2030” (Moscow, 28 June 2018) (Vseross. Inst. Aviats. Mater., Moscow, 2018), pp. 71–76. M. I. Valueva, I. V. Zelenina, K. R. Akhmadieva, et al., “VIAM’s development in the area of high-temperature carbon plastics”, in Proceedings of 4th All-Russian Conference “Role of Basic Research in the Development of Materials, Technologies, and Directions of their Utilization to 2030” (Moscow, 28 June 2018) (Vseross. Inst. Aviats. Mater., Moscow, 2018), pp. 71–76.
12.
go back to reference R. R. Mukhametov, E. A. Dolgova, Yu. I. Merkulova, et al., “Development of a bismaleimide thermally resistant binder for composite materials intended for aircraft industry,” Aviats. Mater. Tekhnol., No. 4, 53—57 (2014). R. R. Mukhametov, E. A. Dolgova, Yu. I. Merkulova, et al., “Development of a bismaleimide thermally resistant binder for composite materials intended for aircraft industry,” Aviats. Mater. Tekhnol., No. 4, 53—57 (2014).
13.
go back to reference A. I. Tkachuk, I. V. Terekhov, Ya. M. Gurevich, et al., “Application of bismaleimide binder VST for production of thermally resistant dimension-stable accessories made of polymer composite materials,” Aviats. Mater. Tekhnol., No. 2, 32–40 (2020). A. I. Tkachuk, I. V. Terekhov, Ya. M. Gurevich, et al., “Application of bismaleimide binder VST for production of thermally resistant dimension-stable accessories made of polymer composite materials,” Aviats. Mater. Tekhnol., No. 2, 32–40 (2020).
14.
go back to reference E. N. Kablov, M. I. Valueva, I. V. Zelenina, et al., “Carbon plastics on the basis of benzoxazineboligomers: Advanced materials,” Trudy Vseross. Inst. Aviats. Mater., No. 1, 68–77 (2020). E. N. Kablov, M. I. Valueva, I. V. Zelenina, et al., “Carbon plastics on the basis of benzoxazineboligomers: Advanced materials,” Trudy Vseross. Inst. Aviats. Mater., No. 1, 68–77 (2020).
15.
go back to reference M. I. Valueva, I. V. Zelenina, M. A. Zharinov, et al., “High-temperature carbon plastics on the basis of thermoreactive polyimide binder,” Vopr. Materialoved., No. 3, 89–102 (2020).CrossRef M. I. Valueva, I. V. Zelenina, M. A. Zharinov, et al., “High-temperature carbon plastics on the basis of thermoreactive polyimide binder,” Vopr. Materialoved., No. 3, 89–102 (2020).CrossRef
16.
go back to reference I. V. Zelenina, I. N. Gulyaev, A. I. Kucherovskii, et al., “Heat resistant carbon plastics for the working wheel of a centrifugal compressor,” Trudy Vseross. Inst. Aviats. Mater., No. 2, 64–71 (2016). I. V. Zelenina, I. N. Gulyaev, A. I. Kucherovskii, et al., “Heat resistant carbon plastics for the working wheel of a centrifugal compressor,” Trudy Vseross. Inst. Aviats. Mater., No. 2, 64–71 (2016).
17.
18.
19.
go back to reference B. I. Molchanov and M. M. Gudimov, “Properties of carbon plastics and scope of their applications,” Aviats. Prom-st, Nos. 3–4, 58–60 (1997). B. I. Molchanov and M. M. Gudimov, “Properties of carbon plastics and scope of their applications,” Aviats. Prom-st, Nos. 3–4, 58–60 (1997).
20.
go back to reference CF & CFRP Market worth 37.19 Billion USD by 2022. https://www.marketsandmarkets.com/PressReleases/carbon-fiber-composites.asp. CF & CFRP Market worth 37.19 Billion USD by 2022. https://​www.​marketsandmarket​s.​com/​PressReleases/​carbon-fiber-composites.​asp.​
21.
go back to reference CF & CFRP Market by Source (Virgin, Recycled), Precursor (PAN, Pitch, Rayon), Resin (Thermosetting, Thermoplastic), Manufacturing Process, End-use Industry, and Region—Global Forecast to 2025. http://www.marketsandmarkets.com/Market-Reports/carbon-fiber-composites-market-416. CF & CFRP Market by Source (Virgin, Recycled), Precursor (PAN, Pitch, Rayon), Resin (Thermosetting, Thermoplastic), Manufacturing Process, End-use Industry, and Region—Global Forecast to 2025. http://​www.​marketsandmarket​s.​com/​Market-Reports/​carbon-fiber-composites-market-416.​
22.
go back to reference V. A. Lototskaya, L. F. Yakovenko, E. N. Alekseenko, et al., “Effect of space factors modelled in laboratory on the cyclic strength of carbon plastics,” Vopr. Atom. Nauki Tekh., No. 4, 118–123 (2011). V. A. Lototskaya, L. F. Yakovenko, E. N. Alekseenko, et al., “Effect of space factors modelled in laboratory on the cyclic strength of carbon plastics,” Vopr. Atom. Nauki Tekh., No. 4, 118–123 (2011).
23.
go back to reference L. V. Denisova, “Composite materials on the basis of a polyimide matrix for spacecraft,” Mezhdunarod. Nauchno-Issled. Zh., No. 9, 30–31 (2014). L. V. Denisova, “Composite materials on the basis of a polyimide matrix for spacecraft,” Mezhdunarod. Nauchno-Issled. Zh., No. 9, 30–31 (2014).
24.
go back to reference P. V. Matyukhin, “Heat resistant polymer composites for neutron and gamma protection,” Mezhdunarod. Nauchno-Issled. Zh., No. 6–1, 70–71 (2014). P. V. Matyukhin, “Heat resistant polymer composites for neutron and gamma protection,” Mezhdunarod. Nauchno-Issled. Zh., No. 6–1, 70–71 (2014).
25.
go back to reference A. V. Yastrebinskaya, N. I, Cherkashina, and P. V. Matyukhin, “Radiation-protective nano-filled polymers for space systems,” Mezhd. Zh. Prikl. Fund. Issled., No. 12, 1191–1194 (2015). A. V. Yastrebinskaya, N. I, Cherkashina, and P. V. Matyukhin, “Radiation-protective nano-filled polymers for space systems,” Mezhd. Zh. Prikl. Fund. Issled., No. 12, 1191–1194 (2015).
26.
go back to reference Shukhov State Technological Institute (Belgorod), RF Patent 2673336. Shukhov State Technological Institute (Belgorod), RF Patent 2673336.
27.
go back to reference I. M. Demonis and A. P. Petrova, “VIAM’s materials in space technology,” Vse Mater. Entsiklopedich. Spravochnik, No. 6, 2–9 (2011). I. M. Demonis and A. P. Petrova, “VIAM’s materials in space technology,” Vse Mater. Entsiklopedich. Spravochnik, No. 6, 2–9 (2011).
28.
go back to reference A. V. Vlasenko and V. V. Skryabin, “Application of advanced composite materials for rocket and space technology projects,” Aktual. Probl. Aviatsii Kosmonavtiki 1, 71–73 (2016). A. V. Vlasenko and V. V. Skryabin, “Application of advanced composite materials for rocket and space technology projects,” Aktual. Probl. Aviatsii Kosmonavtiki 1, 71–73 (2016).
29.
go back to reference E. A. Nikolaeva, A. N. Timofeev, and K. V. Mikhailovskii, “High thermal conductivity carbon plastic of the basis of a pitch and a dispersive filled ENFB matrix,” Inform.-Tekhnol. Vestn., No. 2, 130—137 (2018) E. A. Nikolaeva, A. N. Timofeev, and K. V. Mikhailovskii, “High thermal conductivity carbon plastic of the basis of a pitch and a dispersive filled ENFB matrix,” Inform.-Tekhnol. Vestn., No. 2, 130—137 (2018)
30.
go back to reference S. A. Korfunenko, “Prospects for use of metal composites operated in open space,” Mezhdunar. Nauch.-Issled. Zh., No. 11–1, 32–34 (2014). S. A. Korfunenko, “Prospects for use of metal composites operated in open space,” Mezhdunar. Nauch.-Issled. Zh., No. 11–1, 32–34 (2014).
31.
go back to reference A. A. Smerdov, I. A. Buyanov, and I. V. Chudnov, “Analysis of optimal combinations of the requirements for carbon plastics u der development for large-size spacecraft constructions,” Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 8, 70–77 (2012) A. A. Smerdov, I. A. Buyanov, and I. V. Chudnov, “Analysis of optimal combinations of the requirements for carbon plastics u der development for large-size spacecraft constructions,” Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 8, 70–77 (2012)
32.
go back to reference Aerospace Advanced Composite Materials Selector Guide. https://www.toraytac.com/media/99290c4d-4856-49e5-8ca7-d338c8f144f5/UvyInA/TAC/Documents/Selector%20Guides/Aerospace%20selector%20 guides/Toray_Aerospace-Advanced-Composite-Materials_Selector-Guide.pdf. Aerospace Advanced Composite Materials Selector Guide. https://​www.​toraytac.​com/​media/​99290c4d-4856-49e5-8ca7-d338c8f144f5/​UvyInA/​TAC/​Documents/​Selector%20Guides/Aerospace%20selector%20 guides/Toray_Aerospace-Advanced-Composite-Materials_Selector-Guide.pdf.
33.
go back to reference V. E. Bitkin, O. G. Zhidkova, A. V. Denisov, et al., “Designing dimension-stable carrier structure of the optical-electron unit made of carbon plastic for spacecraft,” Izv. Samarsk. Nauch. Tsentra Ros. Akad. Nauk 18, 571–577 (2016). V. E. Bitkin, O. G. Zhidkova, A. V. Denisov, et al., “Designing dimension-stable carrier structure of the optical-electron unit made of carbon plastic for spacecraft,” Izv. Samarsk. Nauch. Tsentra Ros. Akad. Nauk 18, 571–577 (2016).
34.
go back to reference A. V. Degtyarev and A. M. Potapov, “Studies of the properties of carbon-plastic cell structures for lightweight structures intended for rockets and spacecraft,” Tekh. Diagnostika Nerazrushyushchii Kontrol, No. 3, 20–26 (2012). A. V. Degtyarev and A. M. Potapov, “Studies of the properties of carbon-plastic cell structures for lightweight structures intended for rockets and spacecraft,” Tekh. Diagnostika Nerazrushyushchii Kontrol, No. 3, 20–26 (2012).
35.
36.
go back to reference K. V. Mikhailovskii, P. V. Prosuntsov, and S. V. Reznik, “Development pf highly thermally conductive polymer composite materials for space structures,” Mosk. Gos. Tekh. Univ. im Baumana, Ser. Mashinostroenie, No. 9, 98–106 (2012). K. V. Mikhailovskii, P. V. Prosuntsov, and S. V. Reznik, “Development pf highly thermally conductive polymer composite materials for space structures,” Mosk. Gos. Tekh. Univ. im Baumana, Ser. Mashinostroenie, No. 9, 98–106 (2012).
37.
go back to reference K. A. Matveev, “Specific features of the application of polymer materials in open space,” Mezhdunar. Nauch.-Issled. Zh., No. 11–2, 54–56 (2014). K. A. Matveev, “Specific features of the application of polymer materials in open space,” Mezhdunar. Nauch.-Issled. Zh., No. 11–2, 54–56 (2014).
38.
go back to reference G. M. Gunyaev and M. Ya. Gofin, “Carbon-carbon composite materials,” Aviats. Mater. Tekhnol., No. S1, 62–90 (2013). G. M. Gunyaev and M. Ya. Gofin, “Carbon-carbon composite materials,” Aviats. Mater. Tekhnol., No. S1, 62–90 (2013).
39.
go back to reference P. F. Rumyantsev, “Creation from carbon plastic of doors of the payload for the large transport aircraft “Buran”,” Aviats. Mater. Tekhnol., No. S1, 56–61 (2013). P. F. Rumyantsev, “Creation from carbon plastic of doors of the payload for the large transport aircraft “Buran”,” Aviats. Mater. Tekhnol., No. S1, 56–61 (2013).
40.
go back to reference Armour for “Buran”. VIAM’s Materials and Technologies for “Energiya-Buran” ISS, Ed. by E. N. Kablov (Nauka i Zhizn’, Moscow, 2013) [in Russian]. Armour for “Buran”. VIAM’s Materials and Technologies for “Energiya-Buran” ISS, Ed. by E. N. Kablov (Nauka i Zhizn’, Moscow, 2013) [in Russian].
42.
go back to reference G. M. Gunyaev, M. I. Dushin, Yu. N. Ivonin, et al., “Effect of exposure to open-space conditions on physicomechanical properties of carbon plastic,” Mekh. Kompozit. Mater., No. 2, 211–215 (1983). G. M. Gunyaev, M. I. Dushin, Yu. N. Ivonin, et al., “Effect of exposure to open-space conditions on physicomechanical properties of carbon plastic,” Mekh. Kompozit. Mater., No. 2, 211–215 (1983).
43.
go back to reference E. N. Kablov, O. V. Startsev, I. S. Deev, et al., “Properties of polymer composite materials after effect of open space on near-Earth orbits,” Vse Mater. Entsiklopedich. Spravochnik, No. 11, 2–16 (2012). E. N. Kablov, O. V. Startsev, I. S. Deev, et al., “Properties of polymer composite materials after effect of open space on near-Earth orbits,” Vse Mater. Entsiklopedich. Spravochnik, No. 11, 2–16 (2012).
44.
go back to reference O. V. Borovikova, “Change in the surface of polymers under irradiation with vacuum ultraviolet,” Mezhdunar. Nauch.-Issled. Zh., No. 11–1, 15–18 (2014). O. V. Borovikova, “Change in the surface of polymers under irradiation with vacuum ultraviolet,” Mezhdunar. Nauch.-Issled. Zh., No. 11–1, 15–18 (2014).
45.
go back to reference L. S. Novikova, M. S. Samokhina, V. N. Chernik, et al., Experimental and theoretical simulation of the ffect of atomic oxygen on polymer composites. http://nuclphys.sinp.msu.ru/school/s12/12_28.pdf. L. S. Novikova, M. S. Samokhina, V. N. Chernik, et al., Experimental and theoretical simulation of the ffect of atomic oxygen on polymer composites. http://​nuclphys.​sinp.​msu.​ru/​school/​s12/​12_​28.​pdf.​
46.
go back to reference M. A. Litarov, “Analysis of mathematical models of gas emission by polymer composite materials under open-space conditions,” Konstruktsii Kompozits. Mater., No. 2, 38–43 (2020). M. A. Litarov, “Analysis of mathematical models of gas emission by polymer composite materials under open-space conditions,” Konstruktsii Kompozits. Mater., No. 2, 38–43 (2020).
Metadata
Title
Carbon Plastics in the Design of Space-Technology Products (Review)
Authors
M. I. Valueva
A. A. Evdokimov
O. N. Klimenko
A. V. Nacharkina
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 4/2022
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S199542122204027X

Other articles of this Issue 4/2022

Polymer Science, Series D 4/2022 Go to the issue

Premium Partners