Skip to main content
Top
Published in: Polymer Science, Series D 4/2022

01-12-2022

Membrane Purification of Depleted Emulsions by Polymer Membranes (Brief Literature Review)

Authors: V. O. Dryakhlov, I. G. Shaykhiev, T. R. Deberdeev, S. V. Sverguzova

Published in: Polymer Science, Series D | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Literature sources regarding membrane purification of emulsified wastewaters containing hydrocarbons have been reviewed. A traditional means of preliminary purification of the disperse phase in order to reduce clogging of membranes has been presented. As an alternative promising option, the possibility has been considered of modification of membranes by chemical reagents in order to give them hydrophobic, amphiphilic, and hydrophilic properties for separation of direct and reverse emulsions. The main patterns of change in membrane properties and characteristics were considered, including changing of moistening, chemical composition, porosity, and roughness, which promote an increase in the performance and selectivity of the process under consideration. A method to recuperate the concentrate of membrane separation of emulsion as an inhibitor of corrosion has been proposed. The issues of membrane regeneration have been briefly covered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Yue, Z. Li., T. Zhang, D. Yang, et al., “Design and fabrication of superwetting fiber-based membranes for oil/water separation applications,” Chem. Eng. J. 364, 292–309 (2019).CrossRef X. Yue, Z. Li., T. Zhang, D. Yang, et al., “Design and fabrication of superwetting fiber-based membranes for oil/water separation applications,” Chem. Eng. J. 364, 292–309 (2019).CrossRef
2.
go back to reference N. H. Ismail, W. N. W. Salleh, et al., “Hydrophilic polymer-based membrane for oily wastewater treatment: A review,” Separation and Purification Tech. 233, 18 (2020).CrossRef N. H. Ismail, W. N. W. Salleh, et al., “Hydrophilic polymer-based membrane for oily wastewater treatment: A review,” Separation and Purification Tech. 233, 18 (2020).CrossRef
3.
go back to reference Y. Chen and Q. Liu Q, “Progress and prospects in membrane technology for oil/water separation.” ACS Symp. Ser. 1348, 73–87 (2020).CrossRef Y. Chen and Q. Liu Q, “Progress and prospects in membrane technology for oil/water separation.” ACS Symp. Ser. 1348, 73–87 (2020).CrossRef
4.
go back to reference R. Su, S. Li, W. Wu, et al., “Recent progress in electrospun nanofibrous membranes for oil/water separation,” Separation and Purification Techn. 256, 22 (2021).CrossRef R. Su, S. Li, W. Wu, et al., “Recent progress in electrospun nanofibrous membranes for oil/water separation,” Separation and Purification Techn. 256, 22 (2021).CrossRef
5.
go back to reference J. Zhang, L. Liu, Y. Si Y, et al., “Electrospun nanofibrous membranes: An effective arsenal for the purification of emulsified oily wastewater,” Adv. Funct. Mater. 30, 25 (2020). J. Zhang, L. Liu, Y. Si Y, et al., “Electrospun nanofibrous membranes: An effective arsenal for the purification of emulsified oily wastewater,” Adv. Funct. Mater. 30, 25 (2020).
6.
go back to reference N. Ali, M. Bilal, A. Khan, et al., “Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation,” Trends in Anal. Chem. 12725, (2020). N. Ali, M. Bilal, A. Khan, et al., “Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation,” Trends in Anal. Chem. 12725, (2020).
7.
go back to reference J. Luo, Z. Huang, L. Liu, et al., “Recent advances in separation applications of polymerized high internal phase emulsions,” J. Separation Sci. 44, 169–187 (2021).CrossRef J. Luo, Z. Huang, L. Liu, et al., “Recent advances in separation applications of polymerized high internal phase emulsions,” J. Separation Sci. 44, 169–187 (2021).CrossRef
8.
go back to reference Y. Yang, N. Ali, M. Bilal, et al., “Robust membranes with tunable functionalities for sustainable oil/water separation,” J. Molec. Liquids 321, 25 (2021).CrossRef Y. Yang, N. Ali, M. Bilal, et al., “Robust membranes with tunable functionalities for sustainable oil/water separation,” J. Molec. Liquids 321, 25 (2021).CrossRef
9.
go back to reference E. Tummons, Q. Han, H. J. Tanudjaja, et al., “Membrane fouling by emulsified oil: A review,” Separation and Purification Technol. 248, 22 (2020).CrossRef E. Tummons, Q. Han, H. J. Tanudjaja, et al., “Membrane fouling by emulsified oil: A review,” Separation and Purification Technol. 248, 22 (2020).CrossRef
10.
go back to reference Yu. R. Abdrakhimov, G. M. Sharafutdinova, R. I. Khangildin, et al., “Analysis of chemical production water systems of oil processing and petrochemical plants,” Neftegazovoe Delo, No. 6, 222–260 (2011). Yu. R. Abdrakhimov, G. M. Sharafutdinova, R. I. Khangildin, et al., “Analysis of chemical production water systems of oil processing and petrochemical plants,” Neftegazovoe Delo, No. 6, 222–260 (2011).
11.
go back to reference N. I. Posvyatenko, Yu. E. Demidova, and T. V. Mel’nik, “Physicochemical methods for purification of waste waters from oil products,” Vestn. Nats. Transp. Univ., No. 29, 250–258 (2014). N. I. Posvyatenko, Yu. E. Demidova, and T. V. Mel’nik, “Physicochemical methods for purification of waste waters from oil products,” Vestn. Nats. Transp. Univ., No. 29, 250–258 (2014).
12.
go back to reference A. I. Guslavskii and Z. A. Kanarskaya, “Advanced technologies for purification of water and soil from oil and oil products,” Vestn. Kazanskogo Tekhnol. Univ., No. 20, 191–199 (2011). A. I. Guslavskii and Z. A. Kanarskaya, “Advanced technologies for purification of water and soil from oil and oil products,” Vestn. Kazanskogo Tekhnol. Univ., No. 20, 191–199 (2011).
13.
go back to reference M. M. Pendergast and E. M. V. Hoek, “A review of water treatment membrane nanotechnologies,” Energy Environ. Sci. 6, 1946–1971 (2011).CrossRef M. M. Pendergast and E. M. V. Hoek, “A review of water treatment membrane nanotechnologies,” Energy Environ. Sci. 6, 1946–1971 (2011).CrossRef
14.
go back to reference X. Zeng, L. Qian, X. Yuan, et al., “Inspired by Stenocara beetles: From water collection to high-efficiency water-in-oil emulsion separation,” ACS Nano 1, 760–769 (2017).CrossRef X. Zeng, L. Qian, X. Yuan, et al., “Inspired by Stenocara beetles: From water collection to high-efficiency water-in-oil emulsion separation,” ACS Nano 1, 760–769 (2017).CrossRef
15.
go back to reference C. Zhou, J. Cheng, K. Hou, et al., “Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation,” Chem. Eng. J. 301, 249–256 (2016).CrossRef C. Zhou, J. Cheng, K. Hou, et al., “Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation,” Chem. Eng. J. 301, 249–256 (2016).CrossRef
16.
go back to reference O. G. Degtyareva, T. I. Safronova, and G. V. Degtyarev, “Techniques and engineering means for protection of environment against spills of oil products,” Politematicheskii Setevoi Elektronnyi Nauch. Zh. Kubanskogo Gos. Agrar. Univ. 9, 64–83 (2005). O. G. Degtyareva, T. I. Safronova, and G. V. Degtyarev, “Techniques and engineering means for protection of environment against spills of oil products,” Politematicheskii Setevoi Elektronnyi Nauch. Zh. Kubanskogo Gos. Agrar. Univ. 9, 64–83 (2005).
17.
go back to reference V. V. Varnakov, I. A. Bysugin, and E. A. Shkalilov, “De-emulsification of oil products as a purification technique,” Alleya Nauki 2, 897–901 (2018). V. V. Varnakov, I. A. Bysugin, and E. A. Shkalilov, “De-emulsification of oil products as a purification technique,” Alleya Nauki 2, 897–901 (2018).
18.
go back to reference S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, “Study of the effect of anionic and cationic surface-active agents on the de-emulsifying efficiency of non-ionic surface-active agents,” Vestn. Kazanskogo Tekhnol. Univ. 15, 39–40 (2012). S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, “Study of the effect of anionic and cationic surface-active agents on the de-emulsifying efficiency of non-ionic surface-active agents,” Vestn. Kazanskogo Tekhnol. Univ. 15, 39–40 (2012).
19.
go back to reference S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, “On the comparability of surface properties of de-emulsifiers and their de-emulsifying activity,” Vestn. Kazanskogo Tekhnol. Univ. 17, 274–276 (2014). S. E. Plokhova, E. D. Sattarova, and A. A. Elpidinskii, “On the comparability of surface properties of de-emulsifiers and their de-emulsifying activity,” Vestn. Kazanskogo Tekhnol. Univ. 17, 274–276 (2014).
20.
go back to reference C. Chen, D. Weng, A. Mahmood, et al., “Separation mechanism and construction of surfaces with special wettability for oil/water separation,” ACS Appl. Mater. Interfaces 11, 11006–11027 (2019).CrossRef C. Chen, D. Weng, A. Mahmood, et al., “Separation mechanism and construction of surfaces with special wettability for oil/water separation,” ACS Appl. Mater. Interfaces 11, 11006–11027 (2019).CrossRef
21.
go back to reference Yu. K. Rubanov and Yu. E. Tokach, “Method of purification of sewage waters from emulsified oil products,” Vestn. Tekhnol. Univ. 18, 246–249 (2015). Yu. K. Rubanov and Yu. E. Tokach, “Method of purification of sewage waters from emulsified oil products,” Vestn. Tekhnol. Univ. 18, 246–249 (2015).
22.
go back to reference D. D. Fazullin, G. V. Mavrin, A. V. Savelyeva, et al., “Sewage treatment from heavy metal ions by the method of deposition, using sulfur-alkaline wastewater as a reagent,” Int. J. Green Pharmacy, Nos. 10–12, 831–835 (2017). D. D. Fazullin, G. V. Mavrin, A. V. Savelyeva, et al., “Sewage treatment from heavy metal ions by the method of deposition, using sulfur-alkaline wastewater as a reagent,” Int. J. Green Pharmacy, Nos. 10–12, 831–835 (2017).
23.
go back to reference O. G. Dubrovskaya, V. V. Evstigneev, and V. A. Kulagin, “Problems in sewage treatment of waste waters containing emulsified oil products in recirculating systems of closed-loop cycles of water utilization and the methods for their resolution,” J. Siberian Federal Univ. Eng. Technol., No. 6, 680–688 (2013). O. G. Dubrovskaya, V. V. Evstigneev, and V. A. Kulagin, “Problems in sewage treatment of waste waters containing emulsified oil products in recirculating systems of closed-loop cycles of water utilization and the methods for their resolution,” J. Siberian Federal Univ. Eng. Technol., No. 6, 680–688 (2013).
24.
go back to reference M. Mulder, Basic Principles of Membrane Technology (Springer, 1996; Moscow, 1999). M. Mulder, Basic Principles of Membrane Technology (Springer, 1996; Moscow, 1999).
25.
go back to reference M.-L. Pellegrin, S. Arabi, J. Aguinaldo, et al., “Membrane processes,” Water Environ. Res. 89, 1066–1135 (2017).CrossRef M.-L. Pellegrin, S. Arabi, J. Aguinaldo, et al., “Membrane processes,” Water Environ. Res. 89, 1066–1135 (2017).CrossRef
26.
go back to reference M. Johnson, G. Greg Liddiard, M. Eddings, et al., “Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices,” J. Micromech. Microeng., No. 19, 1–9 (2009). M. Johnson, G. Greg Liddiard, M. Eddings, et al., “Bubble inclusion and removal using PDMS membrane-based gas permeation for applications in pumping, valving and mixing in microfluidic devices,” J. Micromech. Microeng., No. 19, 1–9 (2009).
27.
go back to reference V. P. Gavrilyuk and A. I. Konoplya, “Protein spectrum of erythrocyte membranes in the conditions of experimental acute pancreatitis and cholangitis,” Usp. Sovrem. Estestvozn., No. 10, 43–43 (2005). V. P. Gavrilyuk and A. I. Konoplya, “Protein spectrum of erythrocyte membranes in the conditions of experimental acute pancreatitis and cholangitis,” Usp. Sovrem. Estestvozn., No. 10, 43–43 (2005).
28.
go back to reference L. E. Ermakova, I. A. Savina. And M. P. Sidorova. “Structural and electric surface characteristics if anisotropic ultra-filtering membranes,” Vestn. St. Petersburg Gos. Univ., No. 1, 55–68 (2012). L. E. Ermakova, I. A. Savina. And M. P. Sidorova. “Structural and electric surface characteristics if anisotropic ultra-filtering membranes,” Vestn. St. Petersburg Gos. Univ., No. 1, 55–68 (2012).
29.
go back to reference I. Sh. Abdullin, E. S. Nefedyev, R. G. Ibragimov, et al., “Application of membrane technology for purification of waste waters of leather and footwear plants,” Vestn. Kazanskogo Tekhnol. Univ., No. 3, 21–26 (2012). I. Sh. Abdullin, E. S. Nefedyev, R. G. Ibragimov, et al., “Application of membrane technology for purification of waste waters of leather and footwear plants,” Vestn. Kazanskogo Tekhnol. Univ., No. 3, 21–26 (2012).
30.
go back to reference M. Masuelli, J. Marchese, and N. A. Ochoa, “SPC/ PVDF membranes for emulsified oily wastewater treatment,” J. Membr. Sci. 326, 688—693 (2009).CrossRef M. Masuelli, J. Marchese, and N. A. Ochoa, “SPC/ PVDF membranes for emulsified oily wastewater treatment,” J. Membr. Sci. 326, 688—693 (2009).CrossRef
31.
go back to reference X. S. Yi, S. L. Yu, W. X. Shi, et al., “The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3,” Desalination 281, 179–184 (2011).CrossRef X. S. Yi, S. L. Yu, W. X. Shi, et al., “The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3,” Desalination 281, 179–184 (2011).CrossRef
32.
go back to reference M. P. Kozlov, V. B. Bochkarev, and V. P. Dubyaga, Ultra-filtration Purification of Water Mixtures from Emulsified Oils (Nauch.-Issled. Inst. Tekh.-Ekomom. Issled. v Khim. Komplekse, Moscow, 1985) [in Russian]. M. P. Kozlov, V. B. Bochkarev, and V. P. Dubyaga, Ultra-filtration Purification of Water Mixtures from Emulsified Oils (Nauch.-Issled. Inst. Tekh.-Ekomom. Issled. v Khim. Komplekse, Moscow, 1985) [in Russian].
33.
go back to reference A. A. Svitsov, Introduction to Membrane Technology (Izd. Ross. Khim.-Tekh. Univ., Moscow, 2007) [in Russian]. A. A. Svitsov, Introduction to Membrane Technology (Izd. Ross. Khim.-Tekh. Univ., Moscow, 2007) [in Russian].
34.
go back to reference L. E. Kopylova, A. O. Kashirin, and A. A. Svitsov, “Hybrid technology for separation of water-oil emulsions combining coalescence, filtration, and microfiltration,” Membr. Membr. Tekhnol 3, 277–282 (2013). L. E. Kopylova, A. O. Kashirin, and A. A. Svitsov, “Hybrid technology for separation of water-oil emulsions combining coalescence, filtration, and microfiltration,” Membr. Membr. Tekhnol 3, 277–282 (2013).
35.
go back to reference W. Baker, Membrane Technology and Applications (Membrane Technology and Research, Newark, CA, 2012), 3rd ed.CrossRef W. Baker, Membrane Technology and Applications (Membrane Technology and Research, Newark, CA, 2012), 3rd ed.CrossRef
36.
go back to reference C. Yang, N. Han, C. Han, et al., “Design of a Janus F‑TiO2 PPS porous membrane with asymmetric wettability for switchable oil/water separation.” ACS Appl. Mater. Interfaces 11, 22408–22418 (2019).CrossRef C. Yang, N. Han, C. Han, et al., “Design of a Janus F‑TiO2 PPS porous membrane with asymmetric wettability for switchable oil/water separation.” ACS Appl. Mater. Interfaces 11, 22408–22418 (2019).CrossRef
37.
go back to reference C. Yang, N. Han, W. Wang, et al., “Fabrication of a PPS microporous membrane for efficient water-in-oil emulsion separation,” Langmuir 34, 10580–10590 (2018).CrossRef C. Yang, N. Han, W. Wang, et al., “Fabrication of a PPS microporous membrane for efficient water-in-oil emulsion separation,” Langmuir 34, 10580–10590 (2018).CrossRef
38.
go back to reference N. Han, C. Yang, Z. Zhang, et al., “Electrostatic assembly of a titanium dioxide hydrophilic poly(phenylene sulfide) porous membrane with enhanced wetting selectivity for separation of strongly corrosive oil–water emulsions,” ACS Appl. Mater. Interfaces 38, 35479–35487 (2019).CrossRef N. Han, C. Yang, Z. Zhang, et al., “Electrostatic assembly of a titanium dioxide hydrophilic poly(phenylene sulfide) porous membrane with enhanced wetting selectivity for separation of strongly corrosive oil–water emulsions,” ACS Appl. Mater. Interfaces 38, 35479–35487 (2019).CrossRef
39.
go back to reference C. F. Medina-Sandoval, J. A. Valencia-Davila, M. Y. Combariza, et al., “Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/ water mixtures using a hydrophobic cellulosic membrane,” Fuel 231, 297–306 (2018).CrossRef C. F. Medina-Sandoval, J. A. Valencia-Davila, M. Y. Combariza, et al., “Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/ water mixtures using a hydrophobic cellulosic membrane,” Fuel 231, 297–306 (2018).CrossRef
40.
go back to reference J. Gu, P. Xiao, J. Chen, et al., “Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water in-oil emulsions,” J. Mater. Chem. A 37, 15268–15272 (2014).CrossRef J. Gu, P. Xiao, J. Chen, et al., “Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water in-oil emulsions,” J. Mater. Chem. A 37, 15268–15272 (2014).CrossRef
41.
go back to reference L. Zhao, R. Li., R. Xu, et al., “Antifouling slippery liquid-infused membrane for separation of water-in-oil emulsions,” J. Membr. Sci. 611, 1–10 (2020).CrossRef L. Zhao, R. Li., R. Xu, et al., “Antifouling slippery liquid-infused membrane for separation of water-in-oil emulsions,” J. Membr. Sci. 611, 1–10 (2020).CrossRef
42.
go back to reference J. Zhang and S. Seeger, “Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption,” Adv. Funct. Mater. 21, 4699–4704 (2011).CrossRef J. Zhang and S. Seeger, “Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption,” Adv. Funct. Mater. 21, 4699–4704 (2011).CrossRef
43.
go back to reference W. Zhang, Z. Shi, F. Zhang, et al., “Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux,” Adv. Mater. 14, 2071–2076 (2013).CrossRef W. Zhang, Z. Shi, F. Zhang, et al., “Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux,” Adv. Mater. 14, 2071–2076 (2013).CrossRef
44.
go back to reference N. P. Tirmizi, B. Raghuraman, and J. Wiencek, “Demulsification of water/oil/solid emulsions by hollow-fiber membranes,” AIChE J. 42, 1263–1276 (1996).CrossRef N. P. Tirmizi, B. Raghuraman, and J. Wiencek, “Demulsification of water/oil/solid emulsions by hollow-fiber membranes,” AIChE J. 42, 1263–1276 (1996).CrossRef
45.
go back to reference X. Zhang, C. Liu, J. Yang, et al., “Wettability switchable membranes for separating both oil-in-water and water-in-oil emulsions,” J. Membrane Sci. 624, 1–26 (2021).CrossRef X. Zhang, C. Liu, J. Yang, et al., “Wettability switchable membranes for separating both oil-in-water and water-in-oil emulsions,” J. Membrane Sci. 624, 1–26 (2021).CrossRef
46.
go back to reference M. Tao, L. Xue, F. Liu, et al., “An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation,” Adv. Mater. 18, 2943–2948 (2014).CrossRef M. Tao, L. Xue, F. Liu, et al., “An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation,” Adv. Mater. 18, 2943–2948 (2014).CrossRef
47.
go back to reference W. Fang, L. Liu, and G. Guo, “Tunable wettability of electrospun polyurethane/silica composite membranes for effective separation of water-in-oil and oil-in-water emulsions,” Chem.–A Eur. J. 47, 11253–11260 (2017).CrossRef W. Fang, L. Liu, and G. Guo, “Tunable wettability of electrospun polyurethane/silica composite membranes for effective separation of water-in-oil and oil-in-water emulsions,” Chem.–A Eur. J. 47, 11253–11260 (2017).CrossRef
48.
go back to reference P. Srijaroonrat, E. Julien, and Y. Aurelle, “Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing,” J. Membr. Sci. 159, 11—20 (1999).CrossRef P. Srijaroonrat, E. Julien, and Y. Aurelle, “Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing,” J. Membr. Sci. 159, 11—20 (1999).CrossRef
49.
go back to reference N. A. Ochoa, M. Masuelli, and J. Marchese, “Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes,” J. Membr. Sci. 226, 203–211 (2003).CrossRef N. A. Ochoa, M. Masuelli, and J. Marchese, “Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes,” J. Membr. Sci. 226, 203–211 (2003).CrossRef
50.
go back to reference R. S. Faibish and Y. Cohen, “Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions,” Colloids and Surf. A 191, 27–40 (2001).CrossRef R. S. Faibish and Y. Cohen, “Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions,” Colloids and Surf. A 191, 27–40 (2001).CrossRef
51.
go back to reference R. S. Faibish and Y. Cohen, “Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions,” J. Membr. Sci. 185, 129–143 (2001).CrossRef R. S. Faibish and Y. Cohen, “Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions,” J. Membr. Sci. 185, 129–143 (2001).CrossRef
52.
go back to reference Zhang S., Jiang G., Gao S. et al., “Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation,” ACS Nano 12, 795—803 (2018).CrossRef Zhang S., Jiang G., Gao S. et al., “Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation,” ACS Nano 12, 795—803 (2018).CrossRef
53.
go back to reference T. Yuan, J. Meng, T. Hao, et al., “A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation,” ACS Appl. Mater. Interfaces. 27, 14896–14904 (2015).CrossRef T. Yuan, J. Meng, T. Hao, et al., “A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation,” ACS Appl. Mater. Interfaces. 27, 14896–14904 (2015).CrossRef
54.
go back to reference A. Salahi, T. Mohammadi, R. M. Behbahani, et al., “Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance,” J. Environ. Chem. Eng. 1, 170–178 (2015).CrossRef A. Salahi, T. Mohammadi, R. M. Behbahani, et al., “Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance,” J. Environ. Chem. Eng. 1, 170–178 (2015).CrossRef
55.
go back to reference H. Zhan, N. Peng, X. Lei, et al., “UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion,” Carbohydrate Polym. 201, 464–470 (2018).CrossRef H. Zhan, N. Peng, X. Lei, et al., “UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion,” Carbohydrate Polym. 201, 464–470 (2018).CrossRef
56.
go back to reference J. Lv., G. Zhang, H. Zhang, et al., “Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal,” Appl. Surf. Sci. 440, 1091–1100 (2018).CrossRef J. Lv., G. Zhang, H. Zhang, et al., “Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal,” Appl. Surf. Sci. 440, 1091–1100 (2018).CrossRef
57.
go back to reference Y. Yang, A. Raza, F. Banat, et al., “The separation of oil in water (O/W) emulsions using polyether sulfone and nitrocellulose microfiltration membranes,” J. Water Process Eng. 25, 113–117 (2018).CrossRef Y. Yang, A. Raza, F. Banat, et al., “The separation of oil in water (O/W) emulsions using polyether sulfone and nitrocellulose microfiltration membranes,” J. Water Process Eng. 25, 113–117 (2018).CrossRef
58.
go back to reference Y. Xiong, C. Wang, H. Wang, et al., “Nano-cellulose hydrogel coated flexible titanate-bismuth oxide membrane for trinity synergistic treatment of super-intricate anion/cation/oily-water,” Chem. Eng. J. 337, 143–151 (2018).CrossRef Y. Xiong, C. Wang, H. Wang, et al., “Nano-cellulose hydrogel coated flexible titanate-bismuth oxide membrane for trinity synergistic treatment of super-intricate anion/cation/oily-water,” Chem. Eng. J. 337, 143–151 (2018).CrossRef
59.
go back to reference Y. Zhang, X. Shan, Z. Jin Z, et al., “Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil,” J. Hazard. Mater. 192, 559–567 (2011).CrossRef Y. Zhang, X. Shan, Z. Jin Z, et al., “Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil,” J. Hazard. Mater. 192, 559–567 (2011).CrossRef
60.
go back to reference P. Mitta, S. Jana, and K. Mohanty, “Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater,” Desalination 282, 54—62 (2011).CrossRef P. Mitta, S. Jana, and K. Mohanty, “Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater,” Desalination 282, 54—62 (2011).CrossRef
61.
go back to reference D. Vasanth, G. Pugazhenthi, and R. Uppaluri, “Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes,” Desalination 320, 86–95 (2013).CrossRef D. Vasanth, G. Pugazhenthi, and R. Uppaluri, “Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes,” Desalination 320, 86–95 (2013).CrossRef
62.
go back to reference S. Emani, R. Uppaluri, and M. K. Purkait, “Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes,” Desalination 341, 61–71 (2014).CrossRef S. Emani, R. Uppaluri, and M. K. Purkait, “Cross flow microfiltration of oil–water emulsions using kaolin based low cost ceramic membranes,” Desalination 341, 61–71 (2014).CrossRef
63.
go back to reference C. N. Matindi, M. Hu, S. Kadanyo, et al., “Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles,” J. Membr. Sci. 620, 1–15 (2021).CrossRef C. N. Matindi, M. Hu, S. Kadanyo, et al., “Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles,” J. Membr. Sci. 620, 1–15 (2021).CrossRef
64.
go back to reference J. M. Benito, A. Conesa, F. Rubio, et al., “Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions,” J. Eur. Ceramic Soc. 25, 1895–1903 (2005).CrossRef J. M. Benito, A. Conesa, F. Rubio, et al., “Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions,” J. Eur. Ceramic Soc. 25, 1895–1903 (2005).CrossRef
65.
go back to reference B. Jiang, K. Cheng, N. Zhang, et al., “One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation,” Separation and Purification Tech. 255, 1–10 (2021).CrossRef B. Jiang, K. Cheng, N. Zhang, et al., “One-step modification of PVDF membrane with tannin-inspired highly hydrophilic and underwater superoleophobic coating for effective oil-in-water emulsion separation,” Separation and Purification Tech. 255, 1–10 (2021).CrossRef
66.
go back to reference Y. Zhu, J. Wang, F. Zhang, et al., “Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation,” Adv. Funct. Mater. 28, 1–10 (2018).CrossRef Y. Zhu, J. Wang, F. Zhang, et al., “Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation,” Adv. Funct. Mater. 28, 1–10 (2018).CrossRef
67.
go back to reference X. Hong, X.-J. Huang, Q.-L. Gao, et al., “Microstructure–performance relationships of hollow-fiber membranes with highly efficient separation of oil-in-water emulsions,” J. Appl. Polymer Sci. 23, 1–10 (2019). X. Hong, X.-J. Huang, Q.-L. Gao, et al., “Microstructure–performance relationships of hollow-fiber membranes with highly efficient separation of oil-in-water emulsions,” J. Appl. Polymer Sci. 23, 1–10 (2019).
68.
go back to reference K. Muthukumar, N. J. Kaleekkal, D. S. Lakshmi, et al., “Tuning the morphology of PVDF membranes using inorganic clusters for oil/water separation,” J. Appl. Polymer Sci. 24, 1–10 (2019). K. Muthukumar, N. J. Kaleekkal, D. S. Lakshmi, et al., “Tuning the morphology of PVDF membranes using inorganic clusters for oil/water separation,” J. Appl. Polymer Sci. 24, 1–10 (2019).
69.
go back to reference D. D. Fazullin and G. V. Mavrin, “Dynamic membrane with a polystyrene surface layer for ultrafiltration of spent coolant lubricant,” Chem. Petrol. Eng. 56, 215–222 (2020).CrossRef D. D. Fazullin and G. V. Mavrin, “Dynamic membrane with a polystyrene surface layer for ultrafiltration of spent coolant lubricant,” Chem. Petrol. Eng. 56, 215–222 (2020).CrossRef
70.
go back to reference D. D. Fazullin, G. V. Mavrin, I. G. Shaikhiev, et al., “Ultrafiltration of oil-in-water emulsions with a dynamic nylon-polystyrene membrane,” Petrol. Chem. 58, 145–151 (2018).CrossRef D. D. Fazullin, G. V. Mavrin, I. G. Shaikhiev, et al., “Ultrafiltration of oil-in-water emulsions with a dynamic nylon-polystyrene membrane,” Petrol. Chem. 58, 145–151 (2018).CrossRef
71.
go back to reference A. B. Gilman and V. K. Potapov, “Plasmochemical modification of the surface of polymers,” Priklad. Fiz., Nos. 3–4, 18 (1995). A. B. Gilman and V. K. Potapov, “Plasmochemical modification of the surface of polymers,” Priklad. Fiz., Nos. 3–4, 18 (1995).
72.
go back to reference L. I. Kravets, S. N. Dmitriev, and A. B. Gilman, “Modification of properties of polymer membranes by low-temperature plasma treatment,” High Energy Chem. 43, 227–234 (2009).CrossRef L. I. Kravets, S. N. Dmitriev, and A. B. Gilman, “Modification of properties of polymer membranes by low-temperature plasma treatment,” High Energy Chem. 43, 227–234 (2009).CrossRef
73.
go back to reference L. I. Kravets, A. B. Gilman, and G. Dinesku, “Low-temperature plasma for modification of properties of polymer membranes,” Ross. Khim. Zh. 57, 83–98 (2013). L. I. Kravets, A. B. Gilman, and G. Dinesku, “Low-temperature plasma for modification of properties of polymer membranes,” Ross. Khim. Zh. 57, 83–98 (2013).
74.
go back to reference V. R. Mkrtychan and S. N. Zubakha, “Development of methods to enhance efficiency of separating membranes,” Zap. Gorn. Inst. 158, 66–68 (2004). V. R. Mkrtychan and S. N. Zubakha, “Development of methods to enhance efficiency of separating membranes,” Zap. Gorn. Inst. 158, 66–68 (2004).
75.
go back to reference I. Sadeghi, A. Aroujalian, A. Raisi, et al., “Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions,” J. Membr. Sci. 430, 24–36 (2013).CrossRef I. Sadeghi, A. Aroujalian, A. Raisi, et al., “Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions,” J. Membr. Sci. 430, 24–36 (2013).CrossRef
76.
go back to reference I. G. Shaikhiev, V. O. Dryakhlov, M. F. Galikhanov, et al., “Separation of oil emulsion using polyacrylonitrile membranes, modified by corona discharge,” Inorg. Mater.: Appl. Res. 11, 1160–1164 (2020).CrossRef I. G. Shaikhiev, V. O. Dryakhlov, M. F. Galikhanov, et al., “Separation of oil emulsion using polyacrylonitrile membranes, modified by corona discharge,” Inorg. Mater.: Appl. Res. 11, 1160–1164 (2020).CrossRef
77.
go back to reference V. O. Dryakhlov, I. G. Shaikhiev, M. F. Galikhanov, et al., “Modification of polymeric membranes by corona discharge,” Membr. Membr. Technol. 2, 195–202 (2020).CrossRef V. O. Dryakhlov, I. G. Shaikhiev, M. F. Galikhanov, et al., “Modification of polymeric membranes by corona discharge,” Membr. Membr. Technol. 2, 195–202 (2020).CrossRef
78.
go back to reference V. P. Ivanov and V. A. Dronchenko, “Utilization of sewage waters with oil-containing wastes by emulsification and combustion, “Vestn. Belorusskoi Gos. Selskohoz. Akad., No. 4, 141–146 (2015). V. P. Ivanov and V. A. Dronchenko, “Utilization of sewage waters with oil-containing wastes by emulsification and combustion, “Vestn. Belorusskoi Gos. Selskohoz. Akad., No. 4, 141–146 (2015).
79.
go back to reference D. D. Fazullin, G. V. Mavrin, and I. G. Shaikhiev, “Investigation of the properties and composition of a concentrate of spent Inkam-1 emulsion as a corrosion inhibitor,” Petrol. Chem. 57, 728–733 (2017).CrossRef D. D. Fazullin, G. V. Mavrin, and I. G. Shaikhiev, “Investigation of the properties and composition of a concentrate of spent Inkam-1 emulsion as a corrosion inhibitor,” Petrol. Chem. 57, 728–733 (2017).CrossRef
80.
go back to reference I. G. Shaikhiev, V. O. Dryakhlov, and D. D. Fazullin, “Membrane treatment of water containing spent cooling fluids,” Chernye Metally 1063, 46–50 (2020). I. G. Shaikhiev, V. O. Dryakhlov, and D. D. Fazullin, “Membrane treatment of water containing spent cooling fluids,” Chernye Metally 1063, 46–50 (2020).
Metadata
Title
Membrane Purification of Depleted Emulsions by Polymer Membranes (Brief Literature Review)
Authors
V. O. Dryakhlov
I. G. Shaykhiev
T. R. Deberdeev
S. V. Sverguzova
Publication date
01-12-2022
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 4/2022
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421222040074

Other articles of this Issue 4/2022

Polymer Science, Series D 4/2022 Go to the issue

Premium Partners