Skip to main content
Top

2020 | OriginalPaper | Chapter

26. Polymer-Derived Ceramics and Their Space Applications

Authors : S. Packirisamy, K. J. Sreejith, Deepa Devapal, B. Swaminathan

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Inorganic and organometallic polymers capable of giving high ceramic residue (more than 50 wt%) on heat treatment in an inert atmosphere are called “preceramic polymers.” As they are polymeric in nature, processing techniques used for conventional polymer processing can be easily adopted. They can be applied as coating, cast into film and drawn into fiber and then converted into corresponding ceramic material. Amorphous materials that are thermally stable to very high temperatures with compositions not obtainable with common synthetic methods can be obtained from preceramic polymers. Kinetic stabilization of less stable phases, adaptability of various fabrication capabilities of polymer process engineering, formation of nanoceramics of desired composition, pressureless sintering, and machinability are the main advantages of obtaining ceramics from polymeric precursors.
Polymer-derived ceramics find applications as oxidation resistant high temperature ceramic materials in the form of fiber, coatings and adhesives, and matrix of ceramic matrix composites for use by aerospace, nuclear, and defense establishments. In addition, they are also being investigated for end-use in biomedical devices, drug delivery systems, water remediation, energy storage devices, microelectronics, and nanosensors.
The present chapter deals with synthesis, characterization, and ceramic conversion of silicon-based preceramic polymers, and ceramics from carbonaceous polymers, and their possible space applications. In view of the voluminous literature, equal emphasis could not be given to many of the developments in the area of preceramic polymers and the discussion is confined to relevant systems which have the scope for space applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375CrossRef Rosso M (2006) Ceramic and metal matrix composites: routes and properties. J Mater Process Technol 175:364–375CrossRef
3.
go back to reference Chantrell PG, Popper P (1965) Inorganic polymers and ceramics. In: Popper P (ed) Special ceramics 1964. Academic, New York, pp 87–103 Chantrell PG, Popper P (1965) Inorganic polymers and ceramics. In: Popper P (ed) Special ceramics 1964. Academic, New York, pp 87–103
4.
go back to reference Verbeek W (1973) Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent 3,853,567 Verbeek W (1973) Production of shaped articles of homogeneous mixtures of silicon carbide and nitride. US Patent 3,853,567
5.
go back to reference Yajima S, Hayashi J, Omori M et al (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685CrossRef Yajima S, Hayashi J, Omori M et al (1976) Development of a silicon carbide fibre with high tensile strength. Nature 261:683–685CrossRef
6.
go back to reference Bill J, Aldinger F (1999) Polymer-derived covalent ceramics. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 33–51CrossRef Bill J, Aldinger F (1999) Polymer-derived covalent ceramics. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 33–51CrossRef
7.
go back to reference Colombo P, Mera G, Riedel R et al (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837 Colombo P, Mera G, Riedel R et al (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837
8.
go back to reference Colombo P, Riedel R, Soraru GD et al (2010) Polymer derived ceramics: from nano-structure to applications. Destech Publications, LancasterCrossRef Colombo P, Riedel R, Soraru GD et al (2010) Polymer derived ceramics: from nano-structure to applications. Destech Publications, LancasterCrossRef
9.
go back to reference Emanuel I, Mera G, Riedel R (2014) Polymer-derived ceramics (PDCs): materials design towards applications at ultrahigh-temperatures and in extreme environments. In: Nanotechnology: concepts, methodologies, tools, and applications. IGI Global, pp 1108–1139 Emanuel I, Mera G, Riedel R (2014) Polymer-derived ceramics (PDCs): materials design towards applications at ultrahigh-temperatures and in extreme environments. In: Nanotechnology: concepts, methodologies, tools, and applications. IGI Global, pp 1108–1139
10.
go back to reference Konegger T, Torrey J, Flores O et al (2014) Ceramics for sustainable energy technologies with a focus on polymer-derived ceramics. In: Novel combustion concepts for sustainable energy development. Springer India, New Delhi, pp 501–533 Konegger T, Torrey J, Flores O et al (2014) Ceramics for sustainable energy technologies with a focus on polymer-derived ceramics. In: Novel combustion concepts for sustainable energy development. Springer India, New Delhi, pp 501–533
11.
go back to reference Low I-M, Sakka Y, Hu CF (2013) MAX phases and ultra-high temperature ceramics for extreme environments. In: Johnston (ed) Polymer derived ceramics. Engineering Science Reference, Hershey, pp 203–245 Low I-M, Sakka Y, Hu CF (2013) MAX phases and ultra-high temperature ceramics for extreme environments. In: Johnston (ed) Polymer derived ceramics. Engineering Science Reference, Hershey, pp 203–245
12.
go back to reference Mera G, Gallei M, Bernard S et al (2015) Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5:468–540CrossRef Mera G, Gallei M, Bernard S et al (2015) Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 5:468–540CrossRef
13.
go back to reference Lu K, Erb D (2018) Polymer derived silicon oxycarbide-based coatings. Int Mater Rev 63:139–161CrossRef Lu K, Erb D (2018) Polymer derived silicon oxycarbide-based coatings. Int Mater Rev 63:139–161CrossRef
15.
go back to reference Yamamura T, Ishikawa T, Shibuya M et al (1988) Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J Mater Sci 23:2589–2594CrossRef Yamamura T, Ishikawa T, Shibuya M et al (1988) Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. J Mater Sci 23:2589–2594CrossRef
16.
go back to reference Suzuki K, Kumagawa K, Kamiyama T et al (2002) Characterization of the medium-range structure of Si-Al-C-O, Si-Zr-C-O and Si-Al-C tyrannofibers by small angle X-ray scattering. J Mater Sci 37:949–953CrossRef Suzuki K, Kumagawa K, Kamiyama T et al (2002) Characterization of the medium-range structure of Si-Al-C-O, Si-Zr-C-O and Si-Al-C tyrannofibers by small angle X-ray scattering. J Mater Sci 37:949–953CrossRef
17.
go back to reference Qian X, Zhou Q, Ni LZ (2015) Preceramic polymer as precursor for near-stoichiometric silicon carbon with high ceramic yield. J Appl Polym Sci 132(4):7–13CrossRef Qian X, Zhou Q, Ni LZ (2015) Preceramic polymer as precursor for near-stoichiometric silicon carbon with high ceramic yield. J Appl Polym Sci 132(4):7–13CrossRef
18.
go back to reference Zhong X, Pei X, Miao Y et al (2017) Accelerating the crosslinking process of hyper branched polycarbosilane by UV irradiation. J Eur Ceram Soc 37(10):3263–3270CrossRef Zhong X, Pei X, Miao Y et al (2017) Accelerating the crosslinking process of hyper branched polycarbosilane by UV irradiation. J Eur Ceram Soc 37(10):3263–3270CrossRef
19.
go back to reference Hong J, Cho KY, Shin DG et al (2015) Room temperature reaction of polycarbosilane with iodine under different atmospheres for polymer-derived silicon carbide fibres. RSC Adv 5(102):83847–83856CrossRef Hong J, Cho KY, Shin DG et al (2015) Room temperature reaction of polycarbosilane with iodine under different atmospheres for polymer-derived silicon carbide fibres. RSC Adv 5(102):83847–83856CrossRef
20.
go back to reference Tian Y, Ge M, Zhang W et al (2015) Metallocene catalytic insertion polymerization of 1-silene to polycarbosilanes. Sci Rep 5(1):16274CrossRef Tian Y, Ge M, Zhang W et al (2015) Metallocene catalytic insertion polymerization of 1-silene to polycarbosilanes. Sci Rep 5(1):16274CrossRef
21.
go back to reference Vijay VV, Nair SG, Sreejith KJ et al (2016) Synthesis, ceramic conversion and microstructure analysis of zirconium modified polycarbosilane. J Inorg Organomet Polym 26:302–311CrossRef Vijay VV, Nair SG, Sreejith KJ et al (2016) Synthesis, ceramic conversion and microstructure analysis of zirconium modified polycarbosilane. J Inorg Organomet Polym 26:302–311CrossRef
22.
go back to reference Swaminathan B (2012) Studies on silicon containing inorganic and organometallic polymers. PhD thesis, University of Kerala, Thiruvananthapuram Swaminathan B (2012) Studies on silicon containing inorganic and organometallic polymers. PhD thesis, University of Kerala, Thiruvananthapuram
23.
go back to reference Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 1. Characterisation of PCS and curing products. J Mater Sci 36(16):4037–4043CrossRef Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 1. Characterisation of PCS and curing products. J Mater Sci 36(16):4037–4043CrossRef
24.
go back to reference Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 2. Pyrolysis. J Mater Sci 36(16):4045–4057CrossRef Ly HQ, Taylor R, Day RJ et al (2001) Conversion of polycarbosilane (PCS) to SiC-based ceramic. Part 2. Pyrolysis. J Mater Sci 36(16):4045–4057CrossRef
25.
go back to reference Lu Y, Chen F, An P et al (2016) Polymer precursor synthesis of TaC–SiC ultra high temperature ceramic nanocomposites. RSC Adv 6(91):88770–88776CrossRef Lu Y, Chen F, An P et al (2016) Polymer precursor synthesis of TaC–SiC ultra high temperature ceramic nanocomposites. RSC Adv 6(91):88770–88776CrossRef
26.
go back to reference Amoros P, Beltran D, Guillem C et al (2002) Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors. Chem Mater 14:1585–1590CrossRef Amoros P, Beltran D, Guillem C et al (2002) Synthesis and characterization of SiC/MC/C ceramics (M = Ti, Zr, Hf) starting from totally non-oxidic precursors. Chem Mater 14:1585–1590CrossRef
27.
go back to reference West R, David LD, Djurovich PI et al (1981) Phenylmethylpolysilane: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103:7352–7355CrossRef West R, David LD, Djurovich PI et al (1981) Phenylmethylpolysilane: formable silane copolymers with potential semiconducting properties. J Am Chem Soc 103:7352–7355CrossRef
28.
go back to reference Schilling CL Jr (1986) Polymeric routes to silicon carbide. Brit Polym J 18:355–358CrossRef Schilling CL Jr (1986) Polymeric routes to silicon carbide. Brit Polym J 18:355–358CrossRef
29.
30.
go back to reference Rama Rao M, Packirisamy S, Ravindran PV et al (1992) Synthesis and characterization of poly(tetramethyldisilylene-co-styrene). Macromolecules 25:5165–5170CrossRef Rama Rao M, Packirisamy S, Ravindran PV et al (1992) Synthesis and characterization of poly(tetramethyldisilylene-co-styrene). Macromolecules 25:5165–5170CrossRef
31.
go back to reference Packirisamy S, Ambadas G, Rama Rao M et al (2003) 29Si-NMR spectral studies of polydisilahydrocarbons. Eur Polym J 39:1077CrossRef Packirisamy S, Ambadas G, Rama Rao M et al (2003) 29Si-NMR spectral studies of polydisilahydrocarbons. Eur Polym J 39:1077CrossRef
32.
go back to reference Ambadas G, Packirisamy S, Radhakrishnan TS et al (2004) Synthesis, characterization and thermal properties of poly(methylvinylsilylene-co-styrene). J Appl Polym Sci 91:3774CrossRef Ambadas G, Packirisamy S, Radhakrishnan TS et al (2004) Synthesis, characterization and thermal properties of poly(methylvinylsilylene-co-styrene). J Appl Polym Sci 91:3774CrossRef
33.
go back to reference Devapal D, Packirisamy S, Ambadas G et al (2004) Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene). Thermochim Acta 409:151CrossRef Devapal D, Packirisamy S, Ambadas G et al (2004) Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene). Thermochim Acta 409:151CrossRef
34.
go back to reference Ambadas G (2000) Studies on polysilahydrocarbons and boron and silicon containing preceramic polymers. PhD thesis, University of Kerala, Thiruvananthapuram Ambadas G (2000) Studies on polysilahydrocarbons and boron and silicon containing preceramic polymers. PhD thesis, University of Kerala, Thiruvananthapuram
35.
go back to reference Mark JE, Allcock HR, West R (2005) Inorganic polymers, 2nd edn. Oxford University Press, New York Mark JE, Allcock HR, West R (2005) Inorganic polymers, 2nd edn. Oxford University Press, New York
36.
go back to reference Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182CrossRef Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182CrossRef
37.
go back to reference Baney RH, Itoh M, Sakakibara A et al (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRef Baney RH, Itoh M, Sakakibara A et al (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRef
38.
go back to reference Stabler C, Ionescu E, Graczyk-Zajac M et al (2018) Silicon oxycarbide glasses and glass-ceramics: “all-rounder” materials for advanced structural and functional applications. J Am Ceram Soc 101:4817–4856CrossRef Stabler C, Ionescu E, Graczyk-Zajac M et al (2018) Silicon oxycarbide glasses and glass-ceramics: “all-rounder” materials for advanced structural and functional applications. J Am Ceram Soc 101:4817–4856CrossRef
39.
go back to reference Soraru GD, Dallapiccola E, Dandrea G (1996) Mechanical Characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79:2074–2080CrossRef Soraru GD, Dallapiccola E, Dandrea G (1996) Mechanical Characterization of sol–gel-derived silicon oxycarbide glasses. J Am Ceram Soc 79:2074–2080CrossRef
40.
go back to reference Melcher R, Cromme P, Scheffler M et al (2003) Centrifugal casting of thin-walled ceramic tubes from preceramic polymers. J Am Ceram Soc 86:1211–1213CrossRef Melcher R, Cromme P, Scheffler M et al (2003) Centrifugal casting of thin-walled ceramic tubes from preceramic polymers. J Am Ceram Soc 86:1211–1213CrossRef
41.
go back to reference Brequel H, Parmentier J, Walter S et al (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16:2585–2598CrossRef Brequel H, Parmentier J, Walter S et al (2004) Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem Mater 16:2585–2598CrossRef
42.
go back to reference Kleebe HJ, Blum JD (2008) SiOC ceramic with high excess free carbon. J Eur Ceram Soc 28:1037–1042CrossRef Kleebe HJ, Blum JD (2008) SiOC ceramic with high excess free carbon. J Eur Ceram Soc 28:1037–1042CrossRef
43.
go back to reference Saha A, Raj R (2006) A model for nano domains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195 Saha A, Raj R (2006) A model for nano domains in polymer-derived SiCO. J Am Ceram Soc 89(7):2188–2195
44.
go back to reference Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583CrossRef Saha A, Raj R (2007) Crystallization maps for SiCO amorphous ceramics. J Am Ceram Soc 90(2):578–583CrossRef
45.
go back to reference Papendorf B, Ionescu E, Kleebe HJ et al (2012) High-temperature creep behavior of dense SiOC-based ceramic nanocomposites: microstructural and phase composition effects. J Am Ceram Soc 96(1):272–280CrossRef Papendorf B, Ionescu E, Kleebe HJ et al (2012) High-temperature creep behavior of dense SiOC-based ceramic nanocomposites: microstructural and phase composition effects. J Am Ceram Soc 96(1):272–280CrossRef
46.
go back to reference Wang F, Apple T, Gill W (2001) Thermal redistribution reactions of Blackglas ceramic. J Appl Polym Sci 81:143–152CrossRef Wang F, Apple T, Gill W (2001) Thermal redistribution reactions of Blackglas ceramic. J Appl Polym Sci 81:143–152CrossRef
47.
go back to reference Noll W (2012) Chapter 7. In: Chemistry and technology of silicones. Elsevier, New York, pp 332–339 Noll W (2012) Chapter 7. In: Chemistry and technology of silicones. Elsevier, New York, pp 332–339
48.
go back to reference Yajima S, Okamura K, Hayashi J et al (1977) Pyrolysis of a polyborodiphenylsiloxane. Nature 266:521–522CrossRef Yajima S, Okamura K, Hayashi J et al (1977) Pyrolysis of a polyborodiphenylsiloxane. Nature 266:521–522CrossRef
49.
go back to reference Kasgoz A, Misono T, Abe Y (1994) Preparation and properties of polyborosiloxanes as precursors for borosilicate formation of SiO2–B2O3 gel fibers and oxides by the sol-gel method using tetraacetoxysilane and boron tri-n-butoxide. J Polym Sci A Polym Chem 32(6):1049–1056CrossRef Kasgoz A, Misono T, Abe Y (1994) Preparation and properties of polyborosiloxanes as precursors for borosilicate formation of SiO2–B2O3 gel fibers and oxides by the sol-gel method using tetraacetoxysilane and boron tri-n-butoxide. J Polym Sci A Polym Chem 32(6):1049–1056CrossRef
50.
go back to reference Kasgoz A, Kuramata M, Abe Y (1999) Preparation and properties of borosilicate gels by the reaction of tetraacetoxysilane with boron tri-n-butoxide. J Mater Sci 34(24):6137–6141CrossRef Kasgoz A, Kuramata M, Abe Y (1999) Preparation and properties of borosilicate gels by the reaction of tetraacetoxysilane with boron tri-n-butoxide. J Mater Sci 34(24):6137–6141CrossRef
51.
go back to reference Yajima S, Okamura K, Hayashi J et al (1978) Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature 273:525–527CrossRef Yajima S, Okamura K, Hayashi J et al (1978) Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor. Nature 273:525–527CrossRef
52.
go back to reference Yajima S, Shishido T, Hamano M (1977) SiC and Si3N4 sintered bodies with new borodiphenylsiloxane polymers as binder. Nature 266:522–524CrossRef Yajima S, Shishido T, Hamano M (1977) SiC and Si3N4 sintered bodies with new borodiphenylsiloxane polymers as binder. Nature 266:522–524CrossRef
53.
go back to reference Hoshii S, Kojima A, Otani S (1996) Mechanical properties and oxidation resistivity of carbon fiber/ceramic composites prepared from borosiloxane. J Mater Res 11(10):2536–2540CrossRef Hoshii S, Kojima A, Otani S (1996) Mechanical properties and oxidation resistivity of carbon fiber/ceramic composites prepared from borosiloxane. J Mater Res 11(10):2536–2540CrossRef
54.
go back to reference Abe Y, Gunji T, Kimata Y et al (1990) Preparation of polymetalloxanes as a precursor for oxide ceramics. J Non-Cryst Solids 121(1–3):21–25CrossRef Abe Y, Gunji T, Kimata Y et al (1990) Preparation of polymetalloxanes as a precursor for oxide ceramics. J Non-Cryst Solids 121(1–3):21–25CrossRef
55.
go back to reference Irwin AD, Holmgren JS, Jonas J (1988) Solid state 29Si and 11B NMR studies of sol-gel derived borosilicates. J Non-Cryst Solids 101(2–3):249–254CrossRef Irwin AD, Holmgren JS, Jonas J (1988) Solid state 29Si and 11B NMR studies of sol-gel derived borosilicates. J Non-Cryst Solids 101(2–3):249–254CrossRef
56.
go back to reference Soraru GD, Dallabona N, Gervais C et al (1999) Organically modified SiO2−B2O3 gels displaying a high content of borosiloxane (B−O−Si) bonds. Chem Mater 11(4):910–919CrossRef Soraru GD, Dallabona N, Gervais C et al (1999) Organically modified SiO2−B2O3 gels displaying a high content of borosiloxane (B−O−Si) bonds. Chem Mater 11(4):910–919CrossRef
57.
go back to reference Zha C, Atkins GR, Masters AF (1998) Preparation and spectroscopy of anhydrous borosilicate sols and their application to thin films. J Non-Cryst Solids 242(1):63–67CrossRef Zha C, Atkins GR, Masters AF (1998) Preparation and spectroscopy of anhydrous borosilicate sols and their application to thin films. J Non-Cryst Solids 242(1):63–67CrossRef
58.
go back to reference Soraru GD, Babonneau F, Gervais C et al (2000) Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid. J Sol-Gel Sci Technol 18(1):11–19CrossRef Soraru GD, Babonneau F, Gervais C et al (2000) Hybrid RSiO1.5/B2O3 gels from modified silicon alkoxides and boric acid. J Sol-Gel Sci Technol 18(1):11–19CrossRef
59.
go back to reference Ambadas G, Packirisamy S, Ninan KN (2002) Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J Mater Sci Lett 21:1003–1005CrossRef Ambadas G, Packirisamy S, Ninan KN (2002) Synthesis, characterization and thermal properties of boron and silicon containing preceramic oligomers. J Mater Sci Lett 21:1003–1005CrossRef
60.
go back to reference Devapal D (2007) Studies on inorganic and organometallic polymers. PhD thesis, Mahatma Gandhi University, Kottayam Devapal D (2007) Studies on inorganic and organometallic polymers. PhD thesis, Mahatma Gandhi University, Kottayam
61.
go back to reference Prabhakaran PV (2008) Studies on non-oxide ceramics derived from polymers and their applications. PhD thesis, University of Kerala, Thiruvananthapuram Prabhakaran PV (2008) Studies on non-oxide ceramics derived from polymers and their applications. PhD thesis, University of Kerala, Thiruvananthapuram
62.
go back to reference Sreejith KJ (2010) Polymer derived ceramics and their high temperature applications. PhD thesis, University of Kerala, Thiruvananthapuram Sreejith KJ (2010) Polymer derived ceramics and their high temperature applications. PhD thesis, University of Kerala, Thiruvananthapuram
63.
go back to reference Devapal D, Packirisamy S, Sreejith KJ et al (2010) Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J Inorg Organomet Polym 20:666–674CrossRef Devapal D, Packirisamy S, Sreejith KJ et al (2010) Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes. J Inorg Organomet Polym 20:666–674CrossRef
64.
go back to reference Sreejith KJ, Prabhakaran PV, Laly KP et al (2016) Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram Int 42:15285–15293CrossRef Sreejith KJ, Prabhakaran PV, Laly KP et al (2016) Vinyl-functionalized poly(borosiloxane) as precursor for SiC/SiBOC nanocomposite. Ceram Int 42:15285–15293CrossRef
66.
go back to reference Devapal D, Packirisamy S, Prabhakaran PV et al (2016) Process for solventless synthesis of resinous borosiloxane oligomer precursors for ceramics. Indian Patent 277874 Devapal D, Packirisamy S, Prabhakaran PV et al (2016) Process for solventless synthesis of resinous borosiloxane oligomer precursors for ceramics. Indian Patent 277874
67.
go back to reference Schiavon MA, Armelin NA, Yoshida I (2008) Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater Chem Phys 112:1047–1054CrossRef Schiavon MA, Armelin NA, Yoshida I (2008) Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Mater Chem Phys 112:1047–1054CrossRef
68.
go back to reference Rubinsztajn S (2014) New facile process for synthesis of borosiloxane resins. J Inorg Organomet Polym Mater 24(6):1092–1095CrossRef Rubinsztajn S (2014) New facile process for synthesis of borosiloxane resins. J Inorg Organomet Polym Mater 24(6):1092–1095CrossRef
69.
go back to reference Schiavon MA, Gervais C, Babonneau F et al (2004) Crystallization behavior of novel silicon boron oxycarbide glasses. J Am Ceram Soc 87(2):203–208CrossRef Schiavon MA, Gervais C, Babonneau F et al (2004) Crystallization behavior of novel silicon boron oxycarbide glasses. J Am Ceram Soc 87(2):203–208CrossRef
70.
go back to reference Sasikala TS, Thomas D, Devapal D (2016) Studies on evolution of nano SiC ceramics from allylborosiloxane. Ceram Int 41(1):1618–1626CrossRef Sasikala TS, Thomas D, Devapal D (2016) Studies on evolution of nano SiC ceramics from allylborosiloxane. Ceram Int 41(1):1618–1626CrossRef
71.
go back to reference Sasikala TS, Devapal D (2015) Studies on high temperature evolution of polymer derived nano SiC ceramics. Mater Sci Forum 830–831:493–497CrossRef Sasikala TS, Devapal D (2015) Studies on high temperature evolution of polymer derived nano SiC ceramics. Mater Sci Forum 830–831:493–497CrossRef
72.
go back to reference Parmentier J, Soraru GD, Banonneau F (2001) Influence of the microstructure on the high temperature behavior of gel-derived SiOC glasses. J Eur Ceram Soc 21:101–108CrossRef Parmentier J, Soraru GD, Banonneau F (2001) Influence of the microstructure on the high temperature behavior of gel-derived SiOC glasses. J Eur Ceram Soc 21:101–108CrossRef
73.
go back to reference Zhang X, Liu C, Hong C et al (2015) Sol-gel-derived SiBOC ceramics with highly graphitized free carbon. Ceram Int 41:15292–15296CrossRef Zhang X, Liu C, Hong C et al (2015) Sol-gel-derived SiBOC ceramics with highly graphitized free carbon. Ceram Int 41:15292–15296CrossRef
74.
go back to reference Struchkov YT, Lindeman SV (1995) Structures of Polymetalloorganosiloxanolates – a novel class of organosilicon metal complexes. J Organomet Chem 488:9–14CrossRef Struchkov YT, Lindeman SV (1995) Structures of Polymetalloorganosiloxanolates – a novel class of organosilicon metal complexes. J Organomet Chem 488:9–14CrossRef
75.
go back to reference Gunji T, Sopyan IIS, Abe Y (1994) Synthesis of polytitanosiloxanes and their transformation to SiO2–TiO2 ceramic fibers. J Polym Sci A Polym Chem 32:3133–3139CrossRef Gunji T, Sopyan IIS, Abe Y (1994) Synthesis of polytitanosiloxanes and their transformation to SiO2–TiO2 ceramic fibers. J Polym Sci A Polym Chem 32:3133–3139CrossRef
76.
go back to reference Dire S, Ceccato R, Babonneau F (2005) Structural and microstructural evolution during pyrolysis of hybrid polydimethylsiloxane-titania nanocomposites. J Sol-Gel Sci Technol 34:53–62CrossRef Dire S, Ceccato R, Babonneau F (2005) Structural and microstructural evolution during pyrolysis of hybrid polydimethylsiloxane-titania nanocomposites. J Sol-Gel Sci Technol 34:53–62CrossRef
77.
go back to reference Liu C, Pan R, Hong C et al (2016) Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer derived ceramics. J Eur Ceram Soc 36:395–402CrossRef Liu C, Pan R, Hong C et al (2016) Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer derived ceramics. J Eur Ceram Soc 36:395–402CrossRef
78.
go back to reference Ionescu E, Linck C, Fasel C et al (2010) Polymer derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93:241–250CrossRef Ionescu E, Linck C, Fasel C et al (2010) Polymer derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93:241–250CrossRef
79.
go back to reference Umicevic AB, Cekic BD, Cavor JNB et al (2015) Evolution of the local structure at Hf sites in SiHfOC upon ceramization of a hafnium-alkoxide-modified polyselsesqui-oxane: a perturbed angular correlation study. J Eur Ceram Soc 35:29–35CrossRef Umicevic AB, Cekic BD, Cavor JNB et al (2015) Evolution of the local structure at Hf sites in SiHfOC upon ceramization of a hafnium-alkoxide-modified polyselsesqui-oxane: a perturbed angular correlation study. J Eur Ceram Soc 35:29–35CrossRef
80.
go back to reference Su D, Yan X, Liu N et al (2016) Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol-gel process. J Mater Sci 51:1418–1427CrossRef Su D, Yan X, Liu N et al (2016) Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted sol-gel process. J Mater Sci 51:1418–1427CrossRef
81.
go back to reference Yan X, Su D, Duan H et al (2015) Preparation of SiOC/HfO2 fibers from silicon alkoxides and tetrachloride hafnium by a sol-gel process. Mater Lett 148:196–199CrossRef Yan X, Su D, Duan H et al (2015) Preparation of SiOC/HfO2 fibers from silicon alkoxides and tetrachloride hafnium by a sol-gel process. Mater Lett 148:196–199CrossRef
82.
go back to reference Kamal A, Rajasekhar BV, Painuly A et al (2019) A novel precursor for the synthesis of mixed non-oxide ultra high temperature ceramics. J Inorg Organomet Polym 30:1578–1588CrossRef Kamal A, Rajasekhar BV, Painuly A et al (2019) A novel precursor for the synthesis of mixed non-oxide ultra high temperature ceramics. J Inorg Organomet Polym 30:1578–1588CrossRef
83.
go back to reference Zhang Z, Xu S, Huang J et al (2020) Straight forward synthesis and molecular structure optimization of novel SiZrBOC ceramic precursor via sol-gel and solvothermal approach. Ceram Int:46:3866–46:3874 Zhang Z, Xu S, Huang J et al (2020) Straight forward synthesis and molecular structure optimization of novel SiZrBOC ceramic precursor via sol-gel and solvothermal approach. Ceram Int:46:3866–46:3874
84.
go back to reference Seyferth D, Wiseman GH, Prud’homme C (1983) A liquid silazane precursor to silicon nitride. J Am Ceram Soc 66(1):C-13–C-14CrossRef Seyferth D, Wiseman GH, Prud’homme C (1983) A liquid silazane precursor to silicon nitride. J Am Ceram Soc 66(1):C-13–C-14CrossRef
85.
go back to reference Birot M, Pilot J-P, Dunogues J (1995) Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev 95:1443–1477CrossRef Birot M, Pilot J-P, Dunogues J (1995) Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev 95:1443–1477CrossRef
86.
go back to reference Lukacs A III (2007) Polysilazane precursors to advanced ceramics. Am Ceram Soc Bull 86:9301–9306 Lukacs A III (2007) Polysilazane precursors to advanced ceramics. Am Ceram Soc Bull 86:9301–9306
87.
go back to reference Weinmann M, Ionescu E, Riedel R et al (2013) Precursor-derived ceramics. In: Handbook of advanced ceramics: materials, applications, processing, and properties. Academic/Elsevier, pp 1025–1101 Weinmann M, Ionescu E, Riedel R et al (2013) Precursor-derived ceramics. In: Handbook of advanced ceramics: materials, applications, processing, and properties. Academic/Elsevier, pp 1025–1101
88.
go back to reference Wang C, Song N, Ni L et al (2016) Synthesis, thermal properties, and ceramization of a novel ethynylaniline-terminated polysilazane. High Perform Polym 28:359–367CrossRef Wang C, Song N, Ni L et al (2016) Synthesis, thermal properties, and ceramization of a novel ethynylaniline-terminated polysilazane. High Perform Polym 28:359–367CrossRef
89.
go back to reference Jun L, YuLin Q, Ping Z et al (2017) Synthesis of SiC ceramics from polysilazane by laser pyrolysis. Surf Coat Technol 321:491–495CrossRef Jun L, YuLin Q, Ping Z et al (2017) Synthesis of SiC ceramics from polysilazane by laser pyrolysis. Surf Coat Technol 321:491–495CrossRef
90.
go back to reference Sun Y, Li Y, Su D et al (2015) Preparation and characterization of high temperature SiCN/ZrB2 ceramic composite. Ceram Int 41(3):3947–3951CrossRef Sun Y, Li Y, Su D et al (2015) Preparation and characterization of high temperature SiCN/ZrB2 ceramic composite. Ceram Int 41(3):3947–3951CrossRef
91.
go back to reference Viard A, Miele P, Bernard S (2016) Review on polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers. J Ceram Soc Jpn 124(10):967–980CrossRef Viard A, Miele P, Bernard S (2016) Review on polymer-derived ceramics route toward SiCN and SiBCN fibers: from chemistry of polycarbosilazanes to the design and characterization of ceramic fibers. J Ceram Soc Jpn 124(10):967–980CrossRef
92.
go back to reference Niebylski LM (1990) Preceramic compositions and ceramic products. US Patent 4,910,173 Niebylski LM (1990) Preceramic compositions and ceramic products. US Patent 4,910,173
93.
go back to reference Su K, Remsen EE, Zank GA et al (1993) Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to silicon nitride carbide boride (SiNCB) ceramic composites. Chem Mater 5:547–556CrossRef Su K, Remsen EE, Zank GA et al (1993) Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to silicon nitride carbide boride (SiNCB) ceramic composites. Chem Mater 5:547–556CrossRef
94.
go back to reference Wideman T, Cortz E, Remsen EE et al (1998) Reactions of monofunctional boranes with hydridopolysilazane: synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials. Chem Mater 10:2218–2230CrossRef Wideman T, Cortz E, Remsen EE et al (1998) Reactions of monofunctional boranes with hydridopolysilazane: synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials. Chem Mater 10:2218–2230CrossRef
95.
go back to reference Weinmann M (1999) High temperature stable ceramics from inorganic polymers. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 83–92CrossRef Weinmann M (1999) High temperature stable ceramics from inorganic polymers. In: Bill J, Wakai F, Aldinger F (eds) Precursor-derived ceramics. Wiley-VCH, Weinheim, pp 83–92CrossRef
96.
go back to reference Weinmann M, Horz M, Berger F et al (2002) Dehydrocoupling of tris(hydridosilylethyl)boranes and cyanamide: a novel access to boron-containing polysilylcarbodiimides. J Organomet Chem 659:29–42CrossRef Weinmann M, Horz M, Berger F et al (2002) Dehydrocoupling of tris(hydridosilylethyl)boranes and cyanamide: a novel access to boron-containing polysilylcarbodiimides. J Organomet Chem 659:29–42CrossRef
97.
go back to reference Sarkar S, Gan Z, An L et al (2011) Structural evolution of polymer-derived amorphous SiBCN ceramics at high temperature. J Phys Chem C 115:24993–25000CrossRef Sarkar S, Gan Z, An L et al (2011) Structural evolution of polymer-derived amorphous SiBCN ceramics at high temperature. J Phys Chem C 115:24993–25000CrossRef
98.
go back to reference Gao Y, Mera G, Nguyen H et al (2012) Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: low temperature thermal transformation. J Euro Ceram Soc 32:1857–1866CrossRef Gao Y, Mera G, Nguyen H et al (2012) Processing route dramatically influencing the nanostructure of carbon-rich SiCN and SiBCN polymer-derived ceramics. Part I: low temperature thermal transformation. J Euro Ceram Soc 32:1857–1866CrossRef
99.
go back to reference Muller A, Peng J, Seifert HS et al (2002) Si-B-C-N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 2. Ceramization of polymers and high-temperature behavior of ceramic materials. Chem Mater 14:3406–3412CrossRef Muller A, Peng J, Seifert HS et al (2002) Si-B-C-N ceramic precursors derived from dichlorodivinylsilane and chlorotrivinylsilane. 2. Ceramization of polymers and high-temperature behavior of ceramic materials. Chem Mater 14:3406–3412CrossRef
100.
go back to reference Yu Z, Zhou C, Li R et al (2012) Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic. Ceram Int 38:4635–4643CrossRef Yu Z, Zhou C, Li R et al (2012) Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic. Ceram Int 38:4635–4643CrossRef
101.
go back to reference Singh G, Bhandavat R (2016) Boron-modified silazanes for synthesis of SiBNC ceramics. US Patent 9,453,111 Singh G, Bhandavat R (2016) Boron-modified silazanes for synthesis of SiBNC ceramics. US Patent 9,453,111
102.
go back to reference Bhandavat R (2013) Molecular precursor derived SiBCN/CNT and SiOC/CNT composite nanowires for energy based applications. PhD thesis, Kansas State University, Manhattan, Kansas Bhandavat R (2013) Molecular precursor derived SiBCN/CNT and SiOC/CNT composite nanowires for energy based applications. PhD thesis, Kansas State University, Manhattan, Kansas
103.
go back to reference Zeng YC, Chun XF, Yong CS et al (2004) Synthesis of polyborosilazane and its utilization as a precursor to boron nitride. J Appl Polym Sci 94:105109CrossRef Zeng YC, Chun XF, Yong CS et al (2004) Synthesis of polyborosilazane and its utilization as a precursor to boron nitride. J Appl Polym Sci 94:105109CrossRef
104.
go back to reference Schiavon MA, Soraru GD, Valeria I et al (2004) Poly(borosilazanes) as precursors of SiBCN glasses: synthesis and high temperature properties. J Non-Cryst Solids 348:156–161CrossRef Schiavon MA, Soraru GD, Valeria I et al (2004) Poly(borosilazanes) as precursors of SiBCN glasses: synthesis and high temperature properties. J Non-Cryst Solids 348:156–161CrossRef
105.
go back to reference Ganesh Babu T, Devasia R (2019) Simple and low cost synthetic route for SiBCN ceramic powder from a boron modified cyclotrisilazane. J Am Ceram Soc 102:476–489CrossRef Ganesh Babu T, Devasia R (2019) Simple and low cost synthetic route for SiBCN ceramic powder from a boron modified cyclotrisilazane. J Am Ceram Soc 102:476–489CrossRef
106.
go back to reference Kousaalya AB, Kumar R, Packirisamy S (2013) Characterization of free carbon in the as-thermolyzed Si–B–C–N ceramic from a polyorganoborosilazane precursor. J Adv Ceram 2(4):325–332CrossRef Kousaalya AB, Kumar R, Packirisamy S (2013) Characterization of free carbon in the as-thermolyzed Si–B–C–N ceramic from a polyorganoborosilazane precursor. J Adv Ceram 2(4):325–332CrossRef
107.
go back to reference Wang X, Wang H, Wang JS et al (2018) Synthesis, characterization and ceramic conversion of a liquid polymeric precursor to SiBCN ceramic via borazine-modified polymethylsilane. J Mater Sci 53:11242–11252CrossRef Wang X, Wang H, Wang JS et al (2018) Synthesis, characterization and ceramic conversion of a liquid polymeric precursor to SiBCN ceramic via borazine-modified polymethylsilane. J Mater Sci 53:11242–11252CrossRef
108.
go back to reference Gerstel P, Muller A, Bill J et al (2003) Synthesis and high-temperature behavior of Si/B/C/N precursor-derived ceramics without “free carbon”. Chem Mater 15:4980–4986CrossRef Gerstel P, Muller A, Bill J et al (2003) Synthesis and high-temperature behavior of Si/B/C/N precursor-derived ceramics without “free carbon”. Chem Mater 15:4980–4986CrossRef
109.
go back to reference Liu F, Kong J, Luo C et al (2015) High temperature self-healing SiBCN ceramics derived from hyperbranched polyborosilazanes. Adv Compos Hybrid Mater 1:506–517CrossRef Liu F, Kong J, Luo C et al (2015) High temperature self-healing SiBCN ceramics derived from hyperbranched polyborosilazanes. Adv Compos Hybrid Mater 1:506–517CrossRef
110.
go back to reference Bechelany MC, Salameh C, Viard A et al (2015) Preparation of polymer-derived Si-B-C-N monoliths by spark plasma sintering technique. J Eur Ceram Soc 35:1361–1374CrossRef Bechelany MC, Salameh C, Viard A et al (2015) Preparation of polymer-derived Si-B-C-N monoliths by spark plasma sintering technique. J Eur Ceram Soc 35:1361–1374CrossRef
111.
go back to reference Lee J, Butt DP, Baney RH et al (2005) Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. J Non-Cryst Solids 351:2995–3005CrossRef Lee J, Butt DP, Baney RH et al (2005) Synthesis and pyrolysis of novel polysilazane to SiBCN ceramic. J Non-Cryst Solids 351:2995–3005CrossRef
112.
go back to reference Zhao H, Chen L, Luan X et al (2016) Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites. J Eur Ceram Soc 37:1321–1329CrossRef Zhao H, Chen L, Luan X et al (2016) Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites. J Eur Ceram Soc 37:1321–1329CrossRef
113.
go back to reference Zhang C, Liu Y, Han K et al (2018) Effect of boron content on structure and high thermal stability of Polyborosilazane precursor. Adv Funct Mater 87:795–803CrossRef Zhang C, Liu Y, Han K et al (2018) Effect of boron content on structure and high thermal stability of Polyborosilazane precursor. Adv Funct Mater 87:795–803CrossRef
114.
go back to reference Luan X, Zhang Q, Yu R et al (2019) Polyborosilazane-derived high temperature resistant SiBCNO. Adv Eng Mater 1801295:1–7 Luan X, Zhang Q, Yu R et al (2019) Polyborosilazane-derived high temperature resistant SiBCNO. Adv Eng Mater 1801295:1–7
115.
go back to reference Tamayo A, Alonso R, Maza M et al (2016) Combined pyrolysis-ammonolysis treatment to retain C during nitridation of SiBOCN ceramics. J Ceram Soc Jpn 124(10):996–1002CrossRef Tamayo A, Alonso R, Maza M et al (2016) Combined pyrolysis-ammonolysis treatment to retain C during nitridation of SiBOCN ceramics. J Ceram Soc Jpn 124(10):996–1002CrossRef
116.
go back to reference Liu Y, Peng S, Cui Y et al (2017) Fabrication and properties of precursor-derived SiBN ternary ceramic fibers. Mater Design 128:150–156CrossRef Liu Y, Peng S, Cui Y et al (2017) Fabrication and properties of precursor-derived SiBN ternary ceramic fibers. Mater Design 128:150–156CrossRef
117.
go back to reference Liu Y, Chen K, Peng S et al (2019) Synthesis and pyrolysis mechanism of a novel polymeric precursor for SiBN ternary ceramic fibers. Ceram Int 45:20172–20177CrossRef Liu Y, Chen K, Peng S et al (2019) Synthesis and pyrolysis mechanism of a novel polymeric precursor for SiBN ternary ceramic fibers. Ceram Int 45:20172–20177CrossRef
118.
go back to reference Ionescu E, Bernard S, Lucas R et al (2019) Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv Eng Mater 21:1900269CrossRef Ionescu E, Bernard S, Lucas R et al (2019) Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv Eng Mater 21:1900269CrossRef
119.
go back to reference Dhamne A, Xu W, Fookes BG et al (2005) Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCN ceramics. J Am Ceram Soc 88:2415–2419CrossRef Dhamne A, Xu W, Fookes BG et al (2005) Polymer–ceramic conversion of liquid polyaluminasilazanes for SiAlCN ceramics. J Am Ceram Soc 88:2415–2419CrossRef
120.
go back to reference Wang Y, Fan Y, Zhang L et al (2006) Polymer-derived SiAlCN ceramics resist oxidation at 1400°C. Scr Mater 55:295–297CrossRef Wang Y, Fan Y, Zhang L et al (2006) Polymer-derived SiAlCN ceramics resist oxidation at 1400°C. Scr Mater 55:295–297CrossRef
121.
go back to reference Shi L, Zhao H, Tang C (2009) Purity of SiC powders fabricated by coat-mix. Int J Miner Metall Mater 16:230–235CrossRef Shi L, Zhao H, Tang C (2009) Purity of SiC powders fabricated by coat-mix. Int J Miner Metall Mater 16:230–235CrossRef
122.
go back to reference Qian JM, Jin ZH (2006) Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure. J Eur Ceram Soc 26:1311–1316CrossRef Qian JM, Jin ZH (2006) Preparation and characterization of porous, biomorphic SiC ceramic with hybrid pore structure. J Eur Ceram Soc 26:1311–1316CrossRef
123.
go back to reference Jung YS, Kwon OJ, Oh SM (2002) Formation of silica-coated carbon powder and conversion to spherical β-silicon carbide by carbothermal reduction. J Am Ceram Soc 85:2134–2136CrossRef Jung YS, Kwon OJ, Oh SM (2002) Formation of silica-coated carbon powder and conversion to spherical β-silicon carbide by carbothermal reduction. J Am Ceram Soc 85:2134–2136CrossRef
124.
go back to reference Li W, Huang Q, Guo H et al (2018) Green synthesis and photoluminescence property of β-SiC nanowires from rice husk silica and phenolic resin. Ceram Int 44:4500–4503CrossRef Li W, Huang Q, Guo H et al (2018) Green synthesis and photoluminescence property of β-SiC nanowires from rice husk silica and phenolic resin. Ceram Int 44:4500–4503CrossRef
125.
go back to reference Prabhakaran PV, Sreejith KJ, Swaminathan B et al (2009) Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin. J Mater Sci 44:528–533CrossRef Prabhakaran PV, Sreejith KJ, Swaminathan B et al (2009) Silicon carbide wires of nano to sub-micron size from phenol-furfuraldehyde resin. J Mater Sci 44:528–533CrossRef
126.
go back to reference Ma CCM, Tai NH, Chang WC et al (1996) Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressure less reaction sintering. J Mater Sci 31:649–654CrossRef Ma CCM, Tai NH, Chang WC et al (1996) Microstructure and oxidation resistance of SiC coated carbon-carbon composites via pressure less reaction sintering. J Mater Sci 31:649–654CrossRef
127.
go back to reference Yu X, Ding S, Meng Z (2008) Aerosol assisted synthesis of silica/phenolic resin composite mesoporous hollow spheres. Colloid Polym Sci 286:1361–1368CrossRef Yu X, Ding S, Meng Z (2008) Aerosol assisted synthesis of silica/phenolic resin composite mesoporous hollow spheres. Colloid Polym Sci 286:1361–1368CrossRef
128.
go back to reference Hasegawa I (1996) New potentially economic process for fabricating nonoxide ceramic fibers. Mater Tech 11:14–15CrossRef Hasegawa I (1996) New potentially economic process for fabricating nonoxide ceramic fibers. Mater Tech 11:14–15CrossRef
129.
go back to reference Song N, Zhang H, Liu H et al (2017) Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering. Ceram Int 43:6786–6790CrossRef Song N, Zhang H, Liu H et al (2017) Effects of SiC whiskers on the mechanical properties and microstructure of SiC ceramics by reactive sintering. Ceram Int 43:6786–6790CrossRef
130.
go back to reference Zhang W, Wang H, Jin Z (2005) Gel casting and properties of porous silicon carbide/silicon nitride composite ceramics. Mater Lett 59:250–256CrossRef Zhang W, Wang H, Jin Z (2005) Gel casting and properties of porous silicon carbide/silicon nitride composite ceramics. Mater Lett 59:250–256CrossRef
131.
go back to reference Nishimura T, Ishihara S, Yoshioka Y et al (2009) Synthesis of non-oxide ceramic fine-powders from organic precursors. Key Eng Mater 403:269–272CrossRef Nishimura T, Ishihara S, Yoshioka Y et al (2009) Synthesis of non-oxide ceramic fine-powders from organic precursors. Key Eng Mater 403:269–272CrossRef
132.
go back to reference Hasegawa I, Nakamura T, Kajiwara M (1996) Synthesis of continuous silicon carbide-titanium carbide hybrid fibers through sol-gel processing. Mater Res Bull 31:869–875CrossRef Hasegawa I, Nakamura T, Kajiwara M (1996) Synthesis of continuous silicon carbide-titanium carbide hybrid fibers through sol-gel processing. Mater Res Bull 31:869–875CrossRef
133.
go back to reference Hwang GC, Matsushita J (2008) Fabrication and properties of SiB6-B4C with phenolic resin as a carbon source. J Mater Sci Technol 24:102–104CrossRef Hwang GC, Matsushita J (2008) Fabrication and properties of SiB6-B4C with phenolic resin as a carbon source. J Mater Sci Technol 24:102–104CrossRef
134.
go back to reference Lee JS, Lee SH, Nishimura T et al (2009) Hexagonal plate-like ternary carbide particulates synthesized by a carbothermal reduction process: processing parameters and synthesis mechanism. J Am Ceram Soc 92:1030–1035CrossRef Lee JS, Lee SH, Nishimura T et al (2009) Hexagonal plate-like ternary carbide particulates synthesized by a carbothermal reduction process: processing parameters and synthesis mechanism. J Am Ceram Soc 92:1030–1035CrossRef
135.
go back to reference Cheng Z, Foroughi P, Behrens A (2017) Synthesis of nanocrystalline TaC powders via single-step high temperature spray pyrolysis from solution precursors. Ceram Int 43:3431–3434CrossRef Cheng Z, Foroughi P, Behrens A (2017) Synthesis of nanocrystalline TaC powders via single-step high temperature spray pyrolysis from solution precursors. Ceram Int 43:3431–3434CrossRef
136.
go back to reference Li X, Yuan G, Zhou Y et al (2018) Electromagnetic properties of porous Si3N4 ceramics with gradient distributions of SiC and pores fabricated by directional in-situ nitridation reaction. Ceram Int 44:1176–1181CrossRef Li X, Yuan G, Zhou Y et al (2018) Electromagnetic properties of porous Si3N4 ceramics with gradient distributions of SiC and pores fabricated by directional in-situ nitridation reaction. Ceram Int 44:1176–1181CrossRef
137.
go back to reference Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469CrossRef Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469CrossRef
138.
go back to reference Ganesh Babu T, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772CrossRef Ganesh Babu T, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772CrossRef
139.
go back to reference Li F, Huang X, Zhang G (2017) Chapter 3. Preparation of ultra-high temperature ceramics-based materials by sol-gel routes. In: Usha C (ed) Recent applications in sol-gel synthesis. InTech Publisher, Croatia Li F, Huang X, Zhang G (2017) Chapter 3. Preparation of ultra-high temperature ceramics-based materials by sol-gel routes. In: Usha C (ed) Recent applications in sol-gel synthesis. InTech Publisher, Croatia
140.
go back to reference Nitin C, Devapal D, Prabhakaran PV (2019) Synthesis of zirconium diboride based ultra high temperature ceramics via preceramic route. Ceram Int 45:25092–25096CrossRef Nitin C, Devapal D, Prabhakaran PV (2019) Synthesis of zirconium diboride based ultra high temperature ceramics via preceramic route. Ceram Int 45:25092–25096CrossRef
141.
go back to reference Greil P, Seibold M (1991) Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication. J Mater Sci 27:1053–1060CrossRef Greil P, Seibold M (1991) Modelling of dimensional changes during polymer-ceramic conversion for bulk component fabrication. J Mater Sci 27:1053–1060CrossRef
142.
go back to reference Erny T, Seibold M, Jarchow O et al (1993) Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis. J Am Ceram Soc 76:206–213CrossRef Erny T, Seibold M, Jarchow O et al (1993) Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis. J Am Ceram Soc 76:206–213CrossRef
143.
go back to reference Greil P (1995) Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc 78:835–848CrossRef Greil P (1995) Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc 78:835–848CrossRef
144.
go back to reference Greil P (2012) Advancements in polymer-filler derived ceramics. J Korean Ceram Soc 49:279–286CrossRef Greil P (2012) Advancements in polymer-filler derived ceramics. J Korean Ceram Soc 49:279–286CrossRef
145.
go back to reference Vijay V, Bhuvaneswari S, Biju VM et al (2016) Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si-B-O-C ceramics. J Ceram Sci Technol 07(01):97–106 Vijay V, Bhuvaneswari S, Biju VM et al (2016) Influence of titanium silicide active filler on the microstructure evolution of borosiloxane-derived Si-B-O-C ceramics. J Ceram Sci Technol 07(01):97–106
146.
go back to reference Vijay V, Biju VM, Devasia R (2016) Active filler controlled polymer pyrolysis – a promising route for the fabrication of advanced ceramics. Ceram Int 42(14):15592–15596CrossRef Vijay V, Biju VM, Devasia R (2016) Active filler controlled polymer pyrolysis – a promising route for the fabrication of advanced ceramics. Ceram Int 42(14):15592–15596CrossRef
147.
go back to reference Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Academic Publishers, NorwellCrossRef Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Academic Publishers, NorwellCrossRef
148.
go back to reference Marshall DB, Cox BN (2008) Integral textile ceramic structures. Annu Rev Mater Sci 38:425–443CrossRef Marshall DB, Cox BN (2008) Integral textile ceramic structures. Annu Rev Mater Sci 38:425–443CrossRef
149.
go back to reference Glass D (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2682 Glass D (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA international space planes and hypersonic systems and technologies conference, p 2682
150.
go back to reference Ohnabe H, Masaki S, Onozuka M et al (1999) Potential application of ceramic matrix composites to aero-engine components. Compos Part A Appl Sci Manuf 30:489–496CrossRef Ohnabe H, Masaki S, Onozuka M et al (1999) Potential application of ceramic matrix composites to aero-engine components. Compos Part A Appl Sci Manuf 30:489–496CrossRef
151.
go back to reference Zhang QM (2011) Research on ceramic matrix composites (CMC) for aerospace applications. Adv Mater Res 284–286:324–329CrossRef Zhang QM (2011) Research on ceramic matrix composites (CMC) for aerospace applications. Adv Mater Res 284–286:324–329CrossRef
154.
go back to reference Zuber C, Reimer T, Stubicar K et al (2010) Manufacturing of the CMC nose cap for the EXPERT spacecraft. Ceram Eng Sci Proc 31(8):59–72CrossRef Zuber C, Reimer T, Stubicar K et al (2010) Manufacturing of the CMC nose cap for the EXPERT spacecraft. Ceram Eng Sci Proc 31(8):59–72CrossRef
155.
go back to reference Harnisch B, Kunkel B, Deyerler M et al (1998) Ultra-lightweight C/SiC mirrors and structures. ESA Bull 95(8):148–152 Harnisch B, Kunkel B, Deyerler M et al (1998) Ultra-lightweight C/SiC mirrors and structures. ESA Bull 95(8):148–152
156.
go back to reference Vaidyaraman S, Purdy M, Walker T et al (2006) C/SiC material evaluation for aircraft brake applications. In: High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 802–808CrossRef Vaidyaraman S, Purdy M, Walker T et al (2006) C/SiC material evaluation for aircraft brake applications. In: High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 802–808CrossRef
157.
go back to reference Li G, Zhang C, Hu H et al (2012) Preparation and mechanical properties of C/SiC nuts and bolts. Mater Sci Eng A 547:1–5CrossRef Li G, Zhang C, Hu H et al (2012) Preparation and mechanical properties of C/SiC nuts and bolts. Mater Sci Eng A 547:1–5CrossRef
158.
go back to reference Schmidt S, Beyer S, Knabe H et al (2004) Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut 55:409–420CrossRef Schmidt S, Beyer S, Knabe H et al (2004) Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut 55:409–420CrossRef
159.
go back to reference Balat-Pichelin M, Charpentier L, Panerai F et al (2015) Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase. J Eur Ceram Soc 35:487–502CrossRef Balat-Pichelin M, Charpentier L, Panerai F et al (2015) Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase. J Eur Ceram Soc 35:487–502CrossRef
160.
go back to reference Franklin KM, Weinberg DJ, Tran TT (2003) Large thermal protection system panel. US Patent 6,505,794 Franklin KM, Weinberg DJ, Tran TT (2003) Large thermal protection system panel. US Patent 6,505,794
161.
162.
go back to reference Pichon T, Barreteau R, Soyris P et al (2009) CMC thermal protection system for future reusable launch vehicles: generic shingle technological maturation and tests. Acta Astronaut 65:165–176CrossRef Pichon T, Barreteau R, Soyris P et al (2009) CMC thermal protection system for future reusable launch vehicles: generic shingle technological maturation and tests. Acta Astronaut 65:165–176CrossRef
163.
go back to reference Olufsen F, Orbekk E (2017) Application of CMC materials in rocket propulsion. In: M Singh, T Ohji, S Dong, D Koch, et al (eds) Advances in high temperature ceramic matrix composites and materials for sustainable development. Wiley, Hoboken, pp 367–374 Olufsen F, Orbekk E (2017) Application of CMC materials in rocket propulsion. In: M Singh, T Ohji, S Dong, D Koch, et al (eds) Advances in high temperature ceramic matrix composites and materials for sustainable development. Wiley, Hoboken, pp 367–374
164.
go back to reference Christin F (2002) Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater 4(12):903–912CrossRef Christin F (2002) Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv Eng Mater 4(12):903–912CrossRef
165.
go back to reference Krenkel W (2004) Carbon fiber reinforced CMC for high-performance structures. Int J Appl Ceram Technol 1(2):188–200CrossRef Krenkel W (2004) Carbon fiber reinforced CMC for high-performance structures. Int J Appl Ceram Technol 1(2):188–200CrossRef
166.
go back to reference Buffenoir F, Zeppa C, Pichon T et al (2016) Development and flight qualification of the C–SiC thermal protection systems for the IXV. Acta Astronaut 124:85–89CrossRef Buffenoir F, Zeppa C, Pichon T et al (2016) Development and flight qualification of the C–SiC thermal protection systems for the IXV. Acta Astronaut 124:85–89CrossRef
167.
go back to reference Liu C, Chen J, Han H et al (2004) A long duration and high reliability liquid apogee engine for satellites. Acta Astronaut 55:401–408CrossRef Liu C, Chen J, Han H et al (2004) A long duration and high reliability liquid apogee engine for satellites. Acta Astronaut 55:401–408CrossRef
168.
go back to reference Schmidt S, Beyer S, Immich H et al (2005) Ceramic matrix composites: a challenge in space-propulsion technology applications. Int J Appl Ceram Technol 2(2):85–96CrossRef Schmidt S, Beyer S, Immich H et al (2005) Ceramic matrix composites: a challenge in space-propulsion technology applications. Int J Appl Ceram Technol 2(2):85–96CrossRef
169.
go back to reference Keller K, Pfeiffer E, Handrick K et al (2006) Advanced high temperature insulations. In: 5th European workshop on thermal protection systems and hot structures, Noordwijk Keller K, Pfeiffer E, Handrick K et al (2006) Advanced high temperature insulations. In: 5th European workshop on thermal protection systems and hot structures, Noordwijk
170.
go back to reference Ortona A, Pusterla S, Gianella S (2011) An integrated assembly method of sandwich structured ceramic matrix composites. J Eur Ceram Soc 31:1821–1826CrossRef Ortona A, Pusterla S, Gianella S (2011) An integrated assembly method of sandwich structured ceramic matrix composites. J Eur Ceram Soc 31:1821–1826CrossRef
171.
go back to reference Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A Appl Sci Manuf 29(9–10):1145–1155CrossRef Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A Appl Sci Manuf 29(9–10):1145–1155CrossRef
172.
go back to reference Yin J, Lee SH, Feng L et al (2015) The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process. Ceram Int 41:4145–4153CrossRef Yin J, Lee SH, Feng L et al (2015) The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process. Ceram Int 41:4145–4153CrossRef
173.
go back to reference Lii DF, Huang JL, Tsui LJ et al (2002) Formation of BN films on carbon fibers by dip-coating. Surf Coat Technol 150:269–276CrossRef Lii DF, Huang JL, Tsui LJ et al (2002) Formation of BN films on carbon fibers by dip-coating. Surf Coat Technol 150:269–276CrossRef
174.
go back to reference Einset EO, Patibandla NB, Luthra KL (1994) Processing conditions for boron nitride coatings in fiber bundles via chemical vapor deposition. J Am Ceram Soc 77:3081–3086CrossRef Einset EO, Patibandla NB, Luthra KL (1994) Processing conditions for boron nitride coatings in fiber bundles via chemical vapor deposition. J Am Ceram Soc 77:3081–3086CrossRef
175.
go back to reference Hackl G, Gerhard H, Popovska N (2006) Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition. Thin Solid Films 513:217–222CrossRef Hackl G, Gerhard H, Popovska N (2006) Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition. Thin Solid Films 513:217–222CrossRef
176.
go back to reference Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64(2):155–170CrossRef Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64(2):155–170CrossRef
177.
go back to reference Kopeliovich D (2014) Advances in the manufacture of ceramic matrix composites using infiltration techniques (Chapter 5). In: Low IM (ed) Advances in ceramic matrix composites. Woodhead Publishing, Cambridge, UK, pp 79–108CrossRef Kopeliovich D (2014) Advances in the manufacture of ceramic matrix composites using infiltration techniques (Chapter 5). In: Low IM (ed) Advances in ceramic matrix composites. Woodhead Publishing, Cambridge, UK, pp 79–108CrossRef
178.
go back to reference Larson NM, Zok FW (2018) In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion. Acta Mater 144:579–589CrossRef Larson NM, Zok FW (2018) In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion. Acta Mater 144:579–589CrossRef
179.
go back to reference Streckert HH, Sheehan JE, Mazdiyasni K (1991) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites. US Patent 5,067,999 Streckert HH, Sheehan JE, Mazdiyasni K (1991) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites. US Patent 5,067,999
180.
go back to reference Liu L, Li X, Xing X et al (2008) A modified polymethylsilane as the precursor for ceramic matrix composites. J Organomet Chem 693:917–922CrossRef Liu L, Li X, Xing X et al (2008) A modified polymethylsilane as the precursor for ceramic matrix composites. J Organomet Chem 693:917–922CrossRef
181.
go back to reference Kotani M, Kohyama A, Katoh Y (2001) Development of SiC/SiC composites by PIP in combination with RS. J Nucl Mater 289:37–41CrossRef Kotani M, Kohyama A, Katoh Y (2001) Development of SiC/SiC composites by PIP in combination with RS. J Nucl Mater 289:37–41CrossRef
182.
go back to reference Ly HQ, Taylor R, Day RJ (2001) Carbon fibre-reinforced CMCs by PCS infiltration. J Mater Sci 36:4027–4035CrossRef Ly HQ, Taylor R, Day RJ (2001) Carbon fibre-reinforced CMCs by PCS infiltration. J Mater Sci 36:4027–4035CrossRef
183.
go back to reference Suo J, Chen Z, Xiao J et al (2005) Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP. Ceram Int 31:447–452CrossRef Suo J, Chen Z, Xiao J et al (2005) Influence of an initial hot-press processing step on the mechanical properties of 3D-C/SiC composites fabricated via PIP. Ceram Int 31:447–452CrossRef
184.
go back to reference Swaminathan B, Painuly A, Manwatkar SK et al (2010) Polymer derived C/C-SiC and C/C-SiBOC ceramics for space applications. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 719–723 Swaminathan B, Painuly A, Manwatkar SK et al (2010) Polymer derived C/C-SiC and C/C-SiBOC ceramics for space applications. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 719–723
185.
go back to reference He X, Zhang X, Zhang C et al (2001) Microstructures of a carbon fiber-reinforced silicon-carbide composite produced by precursor pyrolysis and hot pressing. Compos Sci Technol 61:117–123CrossRef He X, Zhang X, Zhang C et al (2001) Microstructures of a carbon fiber-reinforced silicon-carbide composite produced by precursor pyrolysis and hot pressing. Compos Sci Technol 61:117–123CrossRef
186.
go back to reference Kohyama A, Kotani M, Katoh Y et al (2000) High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J Nucl Mater 283–287:565–569CrossRef Kohyama A, Kotani M, Katoh Y et al (2000) High-performance SiC/SiC composites by improved PIP processing with new precursor polymers. J Nucl Mater 283–287:565–569CrossRef
187.
go back to reference Wang QK, Hu HF, Zheng WW et al (2007) Preparation and property study of 3D Cf/Si-Ti-C-O composites fabricated with polytitanocarbosilane by PIP process. Key Eng Mater 336–338:1242–1244CrossRef Wang QK, Hu HF, Zheng WW et al (2007) Preparation and property study of 3D Cf/Si-Ti-C-O composites fabricated with polytitanocarbosilane by PIP process. Key Eng Mater 336–338:1242–1244CrossRef
188.
go back to reference Ochiai S, Kimura S, Tanaka H et al (2004) Residual strength of PIP-processed SiC/SiC single-tow minicomposite exposed at high temperatures in air as a function of exposure temperature and time. Compos Part A Appl Sci Manuf 35:41–50CrossRef Ochiai S, Kimura S, Tanaka H et al (2004) Residual strength of PIP-processed SiC/SiC single-tow minicomposite exposed at high temperatures in air as a function of exposure temperature and time. Compos Part A Appl Sci Manuf 35:41–50CrossRef
189.
go back to reference Sreeja R, Swaminathan B, Painuly A et al (2010) Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B 168:204–207CrossRef Sreeja R, Swaminathan B, Painuly A et al (2010) Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B 168:204–207CrossRef
190.
go back to reference King D, Apostolov Z, Key T et al (2018) Novel processing approach to polymer-derived ceramic matrix composites. Int J Appl Ceram Technol 15:399–408CrossRef King D, Apostolov Z, Key T et al (2018) Novel processing approach to polymer-derived ceramic matrix composites. Int J Appl Ceram Technol 15:399–408CrossRef
191.
go back to reference Bongio EV, Lewis SL, Welson DR et al (2009) Polymer derived ceramic matrix composites for friction applications. Adv Appl Ceram 108:483–487CrossRef Bongio EV, Lewis SL, Welson DR et al (2009) Polymer derived ceramic matrix composites for friction applications. Adv Appl Ceram 108:483–487CrossRef
192.
go back to reference Ajith R (2012) Studies on lightweight ceramics and ceramic matrix composites from polymeric precursors. PhD thesis, University of Kerala Ajith R (2012) Studies on lightweight ceramics and ceramic matrix composites from polymeric precursors. PhD thesis, University of Kerala
193.
go back to reference Gadow R, Kern F, Ulutas H (2005) Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement. J Eur Ceram Soc 25:221–225CrossRef Gadow R, Kern F, Ulutas H (2005) Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement. J Eur Ceram Soc 25:221–225CrossRef
194.
go back to reference Suttor D, Erny T, Greil P (1997) Fiber-reinforced ceramic-matrix composites with a Polysiloxane/boron-derived matrix. J Am Ceram Soc 80:1831–1840CrossRef Suttor D, Erny T, Greil P (1997) Fiber-reinforced ceramic-matrix composites with a Polysiloxane/boron-derived matrix. J Am Ceram Soc 80:1831–1840CrossRef
195.
go back to reference Pina SRO, Pardini LC, Yoshida IVP (2007) Carbon fiber/ceramic matrix composites: processing, oxidation and mechanical properties. J Mater Sci 42:4245–4253CrossRef Pina SRO, Pardini LC, Yoshida IVP (2007) Carbon fiber/ceramic matrix composites: processing, oxidation and mechanical properties. J Mater Sci 42:4245–4253CrossRef
196.
go back to reference Liedtke V, Olivares IH, Langer M et al (2007) Sol–gel-based carbon/silicon carbide. J Eur Ceram Soc 27:1267–1272CrossRef Liedtke V, Olivares IH, Langer M et al (2007) Sol–gel-based carbon/silicon carbide. J Eur Ceram Soc 27:1267–1272CrossRef
197.
go back to reference Akkas HD, Ovecoglu ML, Tanoglu M (2006) Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. J Eur Ceram Soc 26:3441–3449CrossRef Akkas HD, Ovecoglu ML, Tanoglu M (2006) Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. J Eur Ceram Soc 26:3441–3449CrossRef
198.
go back to reference Rocha RM, Cairo C, Graca ML (2006) Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix. Mater Sci Eng A 437:268–273CrossRef Rocha RM, Cairo C, Graca ML (2006) Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix. Mater Sci Eng A 437:268–273CrossRef
199.
go back to reference Srinivasan K, Tiwari SN (1990) Development of polysilsesquioxane composites. NASA-CR-180263 Srinivasan K, Tiwari SN (1990) Development of polysilsesquioxane composites. NASA-CR-180263
200.
go back to reference Yair H, Liedtke V (2003) Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment. Int Mater Space Environ 540:67–74 Yair H, Liedtke V (2003) Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment. Int Mater Space Environ 540:67–74
201.
go back to reference Sreejith KJ, Packirisamy S (2010) Phenyl borosiloxane derived ceramic matrix composites. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 712–718 Sreejith KJ, Packirisamy S (2010) Phenyl borosiloxane derived ceramic matrix composites. In: Krenkel W, Lamon J (eds) High temperature ceramic materials and composites. AVISO VerlagsegesellschaftmbH, Berlin, pp 712–718
202.
go back to reference Vijay V, Siva S, Sreejith KJ et al (2018) Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mater Chem Phys 205:269–277CrossRef Vijay V, Siva S, Sreejith KJ et al (2018) Effect of boron inclusion in SiOC polymer derived matrix on the mechanical and oxidation resistance properties of fiber reinforced composites. Mater Chem Phys 205:269–277CrossRef
203.
go back to reference Hoshii S, Kojima A, Ooi H et al (1996) Preparation of CF/ceramic composite using 2.5-dimensionally (quintuple) wove CF cloth. Carbon 34:283–284CrossRef Hoshii S, Kojima A, Ooi H et al (1996) Preparation of CF/ceramic composite using 2.5-dimensionally (quintuple) wove CF cloth. Carbon 34:283–284CrossRef
204.
go back to reference Siqueira RL, Yoshida IVP, Pardini LC et al (2007) Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites. Mater Res 10:147–151CrossRef Siqueira RL, Yoshida IVP, Pardini LC et al (2007) Poly(borosiloxanes) as precursors for carbon fiber ceramic matrix composites. Mater Res 10:147–151CrossRef
205.
go back to reference Thünemann M, Herzog A, Vogt U et al (2004) Porous SiC-preforms by Intergranular binding with preceramic polymers. Adv Eng Mater 6:167–172CrossRef Thünemann M, Herzog A, Vogt U et al (2004) Porous SiC-preforms by Intergranular binding with preceramic polymers. Adv Eng Mater 6:167–172CrossRef
206.
go back to reference Herzog A, Thünemann M, Vogt U et al (2005) Novel application of ceramic precursors for the fabrication of composites. J Eur Ceram Soc 25:187–192CrossRef Herzog A, Thünemann M, Vogt U et al (2005) Novel application of ceramic precursors for the fabrication of composites. J Eur Ceram Soc 25:187–192CrossRef
207.
go back to reference Devasia R, Nair SG, Sreejith KJ et al (2018) Fiber-reinforced ceramic matrix composite material with polymer derived interphase coating. Indian Patent 299956 Devasia R, Nair SG, Sreejith KJ et al (2018) Fiber-reinforced ceramic matrix composite material with polymer derived interphase coating. Indian Patent 299956
208.
go back to reference Nair SG, Sreejith KJ, Packirisamy S et al (2018) Polymer derived PyC interphase coating for C/SiBOC composites. Mater Chem Phys 204:179–186CrossRef Nair SG, Sreejith KJ, Packirisamy S et al (2018) Polymer derived PyC interphase coating for C/SiBOC composites. Mater Chem Phys 204:179–186CrossRef
209.
go back to reference Sreejith KJ, Rajasekhar BV, Vijay V et al (2018) Polymer-derived Cf/SiBOC ceramic matrix composites and a method of production thereof. Indian Patent Appl. No. 201841020417 Sreejith KJ, Rajasekhar BV, Vijay V et al (2018) Polymer-derived Cf/SiBOC ceramic matrix composites and a method of production thereof. Indian Patent Appl. No. 201841020417
210.
go back to reference Devapal D, Gopakumar MP, Painuly A et al (2014) Development of C/SiBOC ceramic matrix composite from vinylborosiloxane as matrix resin. In: ISAMPE national conference on composites (INCCOM-13), Thiruvananthapuram Devapal D, Gopakumar MP, Painuly A et al (2014) Development of C/SiBOC ceramic matrix composite from vinylborosiloxane as matrix resin. In: ISAMPE national conference on composites (INCCOM-13), Thiruvananthapuram
211.
go back to reference Fitzer E, Manocha LM (1998) Applications of carbon/carbon composites. In: Carbon reinforcements and carbon/carbon composites. Springer, Berlin/Heidelberg, pp 310–336CrossRef Fitzer E, Manocha LM (1998) Applications of carbon/carbon composites. In: Carbon reinforcements and carbon/carbon composites. Springer, Berlin/Heidelberg, pp 310–336CrossRef
212.
go back to reference Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon-carbon composites. Annu Rev Mater Sci 24(1):19–44CrossRef Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon-carbon composites. Annu Rev Mater Sci 24(1):19–44CrossRef
213.
go back to reference Isola C, Appendino P, Bosco F et al (1998) Protective glass coating for carbon-carbon composites. Carbon 36(7–8):1213–1218CrossRef Isola C, Appendino P, Bosco F et al (1998) Protective glass coating for carbon-carbon composites. Carbon 36(7–8):1213–1218CrossRef
214.
go back to reference Fu QG, Li HJ, Shi XH et al (2005) Silicon carbide coating to protect carbon/carbon composites against oxidation. Scr Mater 52(9):923–927CrossRef Fu QG, Li HJ, Shi XH et al (2005) Silicon carbide coating to protect carbon/carbon composites against oxidation. Scr Mater 52(9):923–927CrossRef
215.
go back to reference Carter JA (1996) Oxidation protection for carbon/carbon composites. US Patent 5,536,574 Carter JA (1996) Oxidation protection for carbon/carbon composites. US Patent 5,536,574
216.
go back to reference Gray PE (1990) Oxidation protection for carbon/carbon composites. US Patent 4,894,286 Gray PE (1990) Oxidation protection for carbon/carbon composites. US Patent 4,894,286
217.
go back to reference Weir RL, Pearsall JA (1990) Glass ceramic precursor compositions containing titanium diboride. US Patent 4,931,413 Weir RL, Pearsall JA (1990) Glass ceramic precursor compositions containing titanium diboride. US Patent 4,931,413
218.
go back to reference Chu Y, Li H, Fu Q et al (2012) Oxidation protection of C/C composites with a multilayer coating of SiC and Si+ SiC+ SiC nanowires. Carbon 50(3):1280–1288CrossRef Chu Y, Li H, Fu Q et al (2012) Oxidation protection of C/C composites with a multilayer coating of SiC and Si+ SiC+ SiC nanowires. Carbon 50(3):1280–1288CrossRef
219.
go back to reference Li J, Luo R, Lin C et al (2007) Oxidation resistance of a gradient self-healing coating for carbon/carbon composites. Carbon 45(13):2471–2478CrossRef Li J, Luo R, Lin C et al (2007) Oxidation resistance of a gradient self-healing coating for carbon/carbon composites. Carbon 45(13):2471–2478CrossRef
220.
go back to reference Li HJ, Xue H, Wang YJ et al (2007) A MoSi2–SiC–Si oxidation protective coating for carbon/carbon composites. Surf Coat Technol 201(24):9444–9447CrossRef Li HJ, Xue H, Wang YJ et al (2007) A MoSi2–SiC–Si oxidation protective coating for carbon/carbon composites. Surf Coat Technol 201(24):9444–9447CrossRef
221.
go back to reference Fu QG, Li HJ, Li KZ et al (2007) A SiC/glass oxidation protective coating for carbon/carbon composites for application at 1173K. Carbon 4(45):892–894CrossRef Fu QG, Li HJ, Li KZ et al (2007) A SiC/glass oxidation protective coating for carbon/carbon composites for application at 1173K. Carbon 4(45):892–894CrossRef
222.
go back to reference Morimoto T, Ogura Y, Kondo M et al (1995) Multilayer coating for carbon-carbon composites. Carbon 33(4):351–357CrossRef Morimoto T, Ogura Y, Kondo M et al (1995) Multilayer coating for carbon-carbon composites. Carbon 33(4):351–357CrossRef
223.
go back to reference Maclean JP (2004) Analysis of the Columbia shuttle disaster – anatomy of a flawed investigation in a pathological organization. J Sci Explor 18(2):187–215 Maclean JP (2004) Analysis of the Columbia shuttle disaster – anatomy of a flawed investigation in a pathological organization. J Sci Explor 18(2):187–215
224.
go back to reference Li H, Zhang L, Cheng L et al (2009) UV curing behavior of a highly branched polycarbosilane. J Mater Sci 44(4):970–975CrossRef Li H, Zhang L, Cheng L et al (2009) UV curing behavior of a highly branched polycarbosilane. J Mater Sci 44(4):970–975CrossRef
225.
go back to reference Liu J, Zhang L, Liu Q et al (2010) Polymer-derived SiOC–barium–strontium aluminosilicate coatings as an environmental barrier for C/SiC composites. J Am Ceram Soc 93(12):4148–4152CrossRef Liu J, Zhang L, Liu Q et al (2010) Polymer-derived SiOC–barium–strontium aluminosilicate coatings as an environmental barrier for C/SiC composites. J Am Ceram Soc 93(12):4148–4152CrossRef
226.
go back to reference Lee KN, Fox DS, Eldridge JI et al (2003) Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J Am Ceram Soc 86(8):1299–1306CrossRef Lee KN, Fox DS, Eldridge JI et al (2003) Upper temperature limit of environmental barrier coatings based on mullite and BSAS. J Am Ceram Soc 86(8):1299–1306CrossRef
227.
go back to reference Wang Y, Li H, Zhang L et al (2009) Oxidation behavior of polymer derived SiCO powders. Ceram Int 35(3):1129–1132CrossRef Wang Y, Li H, Zhang L et al (2009) Oxidation behavior of polymer derived SiCO powders. Ceram Int 35(3):1129–1132CrossRef
228.
go back to reference Wang Y, Fei W, An L (2006) Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor. J Am Ceram Soc 89(3):1079–1082CrossRef Wang Y, Fei W, An L (2006) Oxidation/corrosion of polymer-derived SiAlCN ceramics in water vapor. J Am Ceram Soc 89(3):1079–1082CrossRef
229.
go back to reference An LN, Wang YG, Bharadwaj L et al (2004) Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion. Adv Eng Mater 6(5):337–340CrossRef An LN, Wang YG, Bharadwaj L et al (2004) Silicoaluminum carbonitride with anomalously high resistance to oxidation and hot corrosion. Adv Eng Mater 6(5):337–340CrossRef
230.
go back to reference Mucalo MR, Milestone NB, Vickridge IC et al (1994) Preparation of ceramic coatings from pre-ceramic precursors. J Mater Sci 29(17):4487–4499CrossRef Mucalo MR, Milestone NB, Vickridge IC et al (1994) Preparation of ceramic coatings from pre-ceramic precursors. J Mater Sci 29(17):4487–4499CrossRef
231.
go back to reference Bill J, Heimann D (1996) Polymer-derived ceramic coatings on C/C-SiC composites. J Eur Ceram Soc 16(10):1115–1120CrossRef Bill J, Heimann D (1996) Polymer-derived ceramic coatings on C/C-SiC composites. J Eur Ceram Soc 16(10):1115–1120CrossRef
232.
go back to reference Bonnetot B, Guilhon F, Viala JC et al (1995) Boron nitride matrixes and coatings obtained from tris (methylamino) borane. Application to the protection of graphite against oxidation. Chem Mater 7(2):299–303CrossRef Bonnetot B, Guilhon F, Viala JC et al (1995) Boron nitride matrixes and coatings obtained from tris (methylamino) borane. Application to the protection of graphite against oxidation. Chem Mater 7(2):299–303CrossRef
233.
go back to reference Paciorek KJ, Masuda SR, Kratzer RH et al (1991) Processable precursor for boron nitride coatings and matrixes. Chem Mater 3(1):88–91CrossRef Paciorek KJ, Masuda SR, Kratzer RH et al (1991) Processable precursor for boron nitride coatings and matrixes. Chem Mater 3(1):88–91CrossRef
234.
go back to reference Niebylski LM (1990) Organoborosilazane. US Patent 4,921,925 Niebylski LM (1990) Organoborosilazane. US Patent 4,921,925
235.
go back to reference Baldus HP, Jansen M, Wagner O (1994) New materials in the system Si-(N, C)-B and their characterization. Key Eng Mater 89:75–80 Baldus HP, Jansen M, Wagner O (1994) New materials in the system Si-(N, C)-B and their characterization. Key Eng Mater 89:75–80
236.
go back to reference Wang K, Luo L, Lu Y et al (2015) In-field reparation of the damaged coatings for C/C composites. Ceram Int 41(6):7549–7555CrossRef Wang K, Luo L, Lu Y et al (2015) In-field reparation of the damaged coatings for C/C composites. Ceram Int 41(6):7549–7555CrossRef
237.
go back to reference Manocha LM, Manocha SM (1995) Studies on solution-derived ceramic coatings for oxidation protection of carbon-carbon composites. Carbon 33(4):435–440CrossRef Manocha LM, Manocha SM (1995) Studies on solution-derived ceramic coatings for oxidation protection of carbon-carbon composites. Carbon 33(4):435–440CrossRef
238.
go back to reference Niu F, Wang Y, Abbas I et al (2017) A MoSi2-SiOC-Si3N4/SiC anti-oxidation coating for C/C composites prepared at relatively low temperature. Ceram Int 43(3):3238–3245CrossRef Niu F, Wang Y, Abbas I et al (2017) A MoSi2-SiOC-Si3N4/SiC anti-oxidation coating for C/C composites prepared at relatively low temperature. Ceram Int 43(3):3238–3245CrossRef
239.
go back to reference Schiroky GH (1987) Oxidation behavior of chemically vapor-deposited silicon carbide. Adv Ceram Mater 2(2):137–141CrossRef Schiroky GH (1987) Oxidation behavior of chemically vapor-deposited silicon carbide. Adv Ceram Mater 2(2):137–141CrossRef
240.
go back to reference Jacobson NS, Opila EJ, Lee KN (2001) Oxidation and corrosion of ceramics and ceramic matrix composites. Curr Opin Solid State Mater Sci 5(4):301–309CrossRef Jacobson NS, Opila EJ, Lee KN (2001) Oxidation and corrosion of ceramics and ceramic matrix composites. Curr Opin Solid State Mater Sci 5(4):301–309CrossRef
241.
go back to reference Jacobson NS (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 76(1):3–28CrossRef Jacobson NS (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 76(1):3–28CrossRef
242.
go back to reference More KL, Tortorelli PF, Ferber MK et al (2000) Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc 83(1):211–213CrossRef More KL, Tortorelli PF, Ferber MK et al (2000) Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc 83(1):211–213CrossRef
243.
go back to reference Eaton HE, Linsey GD (2002) Accelerated oxidation of SiC CMCs by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc 22(14–15):2741–2747CrossRef Eaton HE, Linsey GD (2002) Accelerated oxidation of SiC CMCs by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc 22(14–15):2741–2747CrossRef
244.
go back to reference Liu J, Zhang L, Yang J et al (2012) Fabrication of SiCN–Sc2Si2O7 coatings on C/SiC composites at low temperatures. J Eur Ceram Soc 32(3):705–710CrossRef Liu J, Zhang L, Yang J et al (2012) Fabrication of SiCN–Sc2Si2O7 coatings on C/SiC composites at low temperatures. J Eur Ceram Soc 32(3):705–710CrossRef
245.
go back to reference Riedel R, Bill J, Kienzle A (1996) Boron-modified inorganic polymers – precursors for the synthesis of multicomponent ceramics. Appl Organomet Chem 10(3–4):241–256CrossRef Riedel R, Bill J, Kienzle A (1996) Boron-modified inorganic polymers – precursors for the synthesis of multicomponent ceramics. Appl Organomet Chem 10(3–4):241–256CrossRef
246.
go back to reference Kobayashi K, Maeda K, Sano H et al (1995) Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders. Carbon 33(4):397–403CrossRef Kobayashi K, Maeda K, Sano H et al (1995) Formation and oxidation resistance of the coating formed on carbon material composed of B4C-SiC powders. Carbon 33(4):397–403CrossRef
247.
go back to reference Devapal D, Gopakumar MP, Prabhakaran PV et al (2018) An oxidation resistance coating composition and a method of preparation thereof. Indian Patent Appl No. 201841020187, 30 May 2018 Devapal D, Gopakumar MP, Prabhakaran PV et al (2018) An oxidation resistance coating composition and a method of preparation thereof. Indian Patent Appl No. 201841020187, 30 May 2018
248.
go back to reference Packirisamy S (2018) Polymer-derived ceramics for space applications. Feature article in souvenir of international conference on recent trends in materials science and technology, October 2018, India Packirisamy S (2018) Polymer-derived ceramics for space applications. Feature article in souvenir of international conference on recent trends in materials science and technology, October 2018, India
249.
go back to reference Thirunavukkarasu S, Rao BPC, Jayakumar T et al (2011) Eddy current methodology for nondestructive assessment of thickness of silicon carbide coating on carbon-carbon composites. Aerosp Sci Technol 63(3):223–229 Thirunavukkarasu S, Rao BPC, Jayakumar T et al (2011) Eddy current methodology for nondestructive assessment of thickness of silicon carbide coating on carbon-carbon composites. Aerosp Sci Technol 63(3):223–229
251.
go back to reference Kors D (1990) Design considerations for combined air breathing-rocket propulsion systems. In 2nd International aerospace planes conference, Orlando, 1990-5216 Kors D (1990) Design considerations for combined air breathing-rocket propulsion systems. In 2nd International aerospace planes conference, Orlando, 1990-5216
253.
go back to reference Vijay V, Devasia R (2013) Process document on silicon carbide based oxidation protection coating on C/C composite for SRE-II Project Technical Report, PCM/ASCG/CMPD/QC/01/2013 Vijay V, Devasia R (2013) Process document on silicon carbide based oxidation protection coating on C/C composite for SRE-II Project Technical Report, PCM/ASCG/CMPD/QC/01/2013
254.
go back to reference Hald H (2003) Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials. Aerosp Sci Technol 7(7):551–559CrossRef Hald H (2003) Operational limits for reusable space transportation systems due to physical boundaries of C/SiC materials. Aerosp Sci Technol 7(7):551–559CrossRef
255.
go back to reference Sreeja R, Sebastain TV, Prabhakaran PV et al (2018) Precursor based ceramic coating and adhesive compositions for high temperature applications. Indian Patent 304496 Sreeja R, Sebastain TV, Prabhakaran PV et al (2018) Precursor based ceramic coating and adhesive compositions for high temperature applications. Indian Patent 304496
256.
go back to reference Vanitha R (2014) Thermal response evaluation of SiC coated C/C composite for RLV nose cap and ceramic matrix composite for RLV wing leading edge. Technical Report No. AHTD/PN/38/2014. Vikram Sarabhai Space Centre, Thiruvananthapuram Vanitha R (2014) Thermal response evaluation of SiC coated C/C composite for RLV nose cap and ceramic matrix composite for RLV wing leading edge. Technical Report No. AHTD/PN/38/2014. Vikram Sarabhai Space Centre, Thiruvananthapuram
257.
go back to reference Swadyba L, Moskal G, Mendala B et al (2007) Characterisation of APS TBC system during isothermal oxidation at 1100°C. Arch Mater Sci Eng 758:758 Swadyba L, Moskal G, Mendala B et al (2007) Characterisation of APS TBC system during isothermal oxidation at 1100°C. Arch Mater Sci Eng 758:758
258.
go back to reference Mercier D, Gauntt BD, Brochu M (2011) Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings. Surf Coat Technol 205(17–18):4162–4168CrossRef Mercier D, Gauntt BD, Brochu M (2011) Thermal stability and oxidation behavior of nanostructured NiCoCrAlY coatings. Surf Coat Technol 205(17–18):4162–4168CrossRef
259.
go back to reference Simendinger III WH (2005) Thermal barrier composition. US Patent Appl No. US2005/0106381 A1 Simendinger III WH (2005) Thermal barrier composition. US Patent Appl No. US2005/0106381 A1
260.
go back to reference Torrey JD, Bordia RK, Henager CH et al (2006) Composite polymer derived ceramic system for oxidizing environments. J Mater Sci 41(14):4617–4622CrossRef Torrey JD, Bordia RK, Henager CH et al (2006) Composite polymer derived ceramic system for oxidizing environments. J Mater Sci 41(14):4617–4622CrossRef
261.
go back to reference Torrey JD, Bordia RK (2008) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28(1):253–257CrossRef Torrey JD, Bordia RK (2008) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28(1):253–257CrossRef
262.
go back to reference Kappa M, Kebianyor A, Scheffler M (2010) A two-component preceramic polymer system for structured coatings on metals. Thin Solid Films 519(1):301–305CrossRef Kappa M, Kebianyor A, Scheffler M (2010) A two-component preceramic polymer system for structured coatings on metals. Thin Solid Films 519(1):301–305CrossRef
263.
go back to reference Barroso G, Li Q, Bordia RK et al (2019) Polymeric and ceramic silicon-based coatings – a review. J Mater Chem A 7:1936–1963CrossRef Barroso G, Li Q, Bordia RK et al (2019) Polymeric and ceramic silicon-based coatings – a review. J Mater Chem A 7:1936–1963CrossRef
264.
go back to reference Günthner M, Kraus T, Dierdorf A et al (2009) Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J Eur Ceram Soc 29(10):2061–2068CrossRef Günthner M, Kraus T, Dierdorf A et al (2009) Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J Eur Ceram Soc 29(10):2061–2068CrossRef
265.
go back to reference Günthner M, Schütz A, Glatzel U et al (2011) High performance environmental barrier coatings, part I: passive filler loaded SiCN system for steel. J Eur Ceram Soc 31(15):3003–3010CrossRef Günthner M, Schütz A, Glatzel U et al (2011) High performance environmental barrier coatings, part I: passive filler loaded SiCN system for steel. J Eur Ceram Soc 31(15):3003–3010CrossRef
266.
go back to reference Wang K, Günthner M, Motz G et al (2011) High performance environmental barrier coatings, part II: active filler loaded SiOC system for superalloys. J Eur Ceram Soc 31(15):3011–3020CrossRef Wang K, Günthner M, Motz G et al (2011) High performance environmental barrier coatings, part II: active filler loaded SiOC system for superalloys. J Eur Ceram Soc 31(15):3011–3020CrossRef
267.
go back to reference Parchoviansky M, Petrikova I, Barroso GS et al (2018) Corrosion and oxidation behavior of polymer derived ceramic coatings with passive Glass fillers on AISI 441 stainless steel. Ceramics-Silikáty 62(2):146–157CrossRef Parchoviansky M, Petrikova I, Barroso GS et al (2018) Corrosion and oxidation behavior of polymer derived ceramic coatings with passive Glass fillers on AISI 441 stainless steel. Ceramics-Silikáty 62(2):146–157CrossRef
268.
go back to reference Riffard F, Joannet E, Buscail H et al (2017) Beneficial effect of a pre-ceramic polymer coating on the protection at 900°C of a commercial AISI 304 stainless steel. Oxid Met 88(1–2):211–220CrossRef Riffard F, Joannet E, Buscail H et al (2017) Beneficial effect of a pre-ceramic polymer coating on the protection at 900°C of a commercial AISI 304 stainless steel. Oxid Met 88(1–2):211–220CrossRef
269.
go back to reference Nguyen MD, Bang JW, Bin AS et al (2017) Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments. J Eur Ceram Soc 37(5):2001–2010CrossRef Nguyen MD, Bang JW, Bin AS et al (2017) Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments. J Eur Ceram Soc 37(5):2001–2010CrossRef
270.
go back to reference Smokovych I, Hasemann G, Krüger M et al (2017) Polymer derived oxidation barrier coatings for Mo-Si-B alloys. J Eur Ceram Soc 37(15):4559–4565CrossRef Smokovych I, Hasemann G, Krüger M et al (2017) Polymer derived oxidation barrier coatings for Mo-Si-B alloys. J Eur Ceram Soc 37(15):4559–4565CrossRef
271.
go back to reference Soechting FO (1995) A design perspective on thermal barrier coatings. In: Thermal barrier coating workshop, NASA Conference Publication 3312, Cleveland, pp 1–15 Soechting FO (1995) A design perspective on thermal barrier coatings. In: Thermal barrier coating workshop, NASA Conference Publication 3312, Cleveland, pp 1–15
272.
go back to reference Ranjbar-Far M, Absi J, Shahidi S et al (2011) Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system. Mater Des 32(2):728–735CrossRef Ranjbar-Far M, Absi J, Shahidi S et al (2011) Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system. Mater Des 32(2):728–735CrossRef
273.
go back to reference Miller RA (1995) Thermal barrier coatings for aircraft engines – history and directions. In: Thermal barrier coating workshop, NASA CP 3312, p 17 Miller RA (1995) Thermal barrier coatings for aircraft engines – history and directions. In: Thermal barrier coating workshop, NASA CP 3312, p 17
274.
go back to reference Stiger MJ, Yanar NM, Topping MG et al (1999) Thermal barrier coatings for the 21st century. Z Met 90(12):1069–1078 Stiger MJ, Yanar NM, Topping MG et al (1999) Thermal barrier coatings for the 21st century. Z Met 90(12):1069–1078
275.
go back to reference Klemens PG (1993) Thermal conductivity of zirconia. In: Wills KE, Dinwiddie RB, Graves RS (eds) Thermal conductivity, vol 23. Technomics, Lancaster, p 209 Klemens PG (1993) Thermal conductivity of zirconia. In: Wills KE, Dinwiddie RB, Graves RS (eds) Thermal conductivity, vol 23. Technomics, Lancaster, p 209
276.
go back to reference Bose S (2017) High temperature coatings. Butterworth-Heinemann, Elsevier Publishers, Oxford, UK, p 199 Bose S (2017) High temperature coatings. Butterworth-Heinemann, Elsevier Publishers, Oxford, UK, p 199
277.
go back to reference Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284CrossRef Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296(5566):280–284CrossRef
278.
go back to reference Xu H, Guo H (eds) (2011) Thermal barrier coatings. Elsevier, Oxford, UK Xu H, Guo H (eds) (2011) Thermal barrier coatings. Elsevier, Oxford, UK
279.
go back to reference Devapal D, Sebastain TV, Prabhakaran PV et al (2012) Thermal barrier coating on metallic substrates by preceramic route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram Devapal D, Sebastain TV, Prabhakaran PV et al (2012) Thermal barrier coating on metallic substrates by preceramic route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram
280.
go back to reference Devapal D, Sebastian TV, Kirubaharan K et al (2019) Process for multilayer thermal barrier coating for protection of metallic substrates from extreme temperature conditions. Indian Patent 322018 Devapal D, Sebastian TV, Kirubaharan K et al (2019) Process for multilayer thermal barrier coating for protection of metallic substrates from extreme temperature conditions. Indian Patent 322018
281.
go back to reference Teichman A, Stein BA (1988) NASA/SDIO space environmental effects on materials workshop, Hampton. Part 2, NASA-L-16575-PT-2 Teichman A, Stein BA (1988) NASA/SDIO space environmental effects on materials workshop, Hampton. Part 2, NASA-L-16575-PT-2
282.
go back to reference De Groh KK, Banks BA, Sharon KR et al (2018) Chapter 28, Degradation of spacecraft materials. In: Kutz M (ed) Handbook of environmental degradation of materials, 3rd edn. Elsevier, Cambridge, MA, pp 601–645CrossRef De Groh KK, Banks BA, Sharon KR et al (2018) Chapter 28, Degradation of spacecraft materials. In: Kutz M (ed) Handbook of environmental degradation of materials, 3rd edn. Elsevier, Cambridge, MA, pp 601–645CrossRef
283.
go back to reference Reddy MR (1995) Effect of low earth orbit atomic oxygen on spacecraft materials. J Mater Sci 30:281–307CrossRef Reddy MR (1995) Effect of low earth orbit atomic oxygen on spacecraft materials. J Mater Sci 30:281–307CrossRef
284.
go back to reference Packirisamy S, Schwam D, Litt MH (1995) Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 30:308–320CrossRef Packirisamy S, Schwam D, Litt MH (1995) Atomic oxygen resistant coatings for low earth orbit space structures. J Mater Sci 30:308–320CrossRef
285.
go back to reference Arjun GN, Lincy TL, Sajitha TS et al (2015) Atomic oxygen resistant polysiloxane coatings for low earth orbit space structures. Mater Sci Forum 830:699–702CrossRef Arjun GN, Lincy TL, Sajitha TS et al (2015) Atomic oxygen resistant polysiloxane coatings for low earth orbit space structures. Mater Sci Forum 830:699–702CrossRef
287.
go back to reference Wang X, Li Y, Qian Y et al (2018) Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv Mater 1803854:1–7 Wang X, Li Y, Qian Y et al (2018) Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv Mater 1803854:1–7
288.
go back to reference Devapal D, Packirisamy S, Korulla RM (2004) Atomic oxygen resistant coating from poly (tetramethyldisilylene-co-styrene). J Appl Polym Sci 94(6):2368–2375CrossRef Devapal D, Packirisamy S, Korulla RM (2004) Atomic oxygen resistant coating from poly (tetramethyldisilylene-co-styrene). J Appl Polym Sci 94(6):2368–2375CrossRef
289.
go back to reference Devapal D, Packirisamy S, Nair CPR (2006) Phosphazene-based polymers as atomic oxygen resistant materials. J Mater Sci 41:5764–5766CrossRef Devapal D, Packirisamy S, Nair CPR (2006) Phosphazene-based polymers as atomic oxygen resistant materials. J Mater Sci 41:5764–5766CrossRef
290.
go back to reference Wu B, Zhang Y, Yang D et al (2019) Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS: preparation and characterization. Polymers 11(1013):1–19 Wu B, Zhang Y, Yang D et al (2019) Self-healing anti-atomic-oxygen phosphorus-containing polyimide film via molecular level incorporation of nanocage trisilanolphenyl POSS: preparation and characterization. Polymers 11(1013):1–19
291.
go back to reference Maldar NN, Medhi M, Packirisamy S (2017) Aromatic bisetherimides having pendant diphenyl phosphine oxide and a process for preparing the same. Indian Patent 279815 Maldar NN, Medhi M, Packirisamy S (2017) Aromatic bisetherimides having pendant diphenyl phosphine oxide and a process for preparing the same. Indian Patent 279815
292.
go back to reference Maldar NN, Medhi M, Packirisamy S (2016) Aromatic diamines with pendant styryl phosphine oxide group and a process for preparing thesame. Indian Patent 274744 Maldar NN, Medhi M, Packirisamy S (2016) Aromatic diamines with pendant styryl phosphine oxide group and a process for preparing thesame. Indian Patent 274744
293.
go back to reference Chunbo W, Haifu J, Dongbo T et al (2019) Atomic oxygen effects on polymers containing silicon or phosphorus: mass loss, erosion yield, and surface morphology. High Perform Polym 31(8):969–976CrossRef Chunbo W, Haifu J, Dongbo T et al (2019) Atomic oxygen effects on polymers containing silicon or phosphorus: mass loss, erosion yield, and surface morphology. High Perform Polym 31(8):969–976CrossRef
294.
go back to reference Song G, Li X, Jiang Q et al (2015) A novel structural polyimide material with synergistic phosphorus and POSS for atomic oxygen resistance. RSC Adv 5(16):11980–11988CrossRef Song G, Li X, Jiang Q et al (2015) A novel structural polyimide material with synergistic phosphorus and POSS for atomic oxygen resistance. RSC Adv 5(16):11980–11988CrossRef
295.
go back to reference Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for producing siloxane polymers having atomic oxygen resistance and a method of producing articles coated therewith. Indian Patent 216622 Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for producing siloxane polymers having atomic oxygen resistance and a method of producing articles coated therewith. Indian Patent 216622
296.
go back to reference Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for the synthesis of siloxane-imide-epoxy resins. Indian Patent 216620 Packirisamy S, Abraham G, Ramaswamy R et al (2008) A process for the synthesis of siloxane-imide-epoxy resins. Indian Patent 216620
297.
go back to reference Schwam D, Litt MH (1996) Evaluation of atomic oxygen resistant coatings for space structures. Adv Perform Mater 3(2):153–169CrossRef Schwam D, Litt MH (1996) Evaluation of atomic oxygen resistant coatings for space structures. Adv Perform Mater 3(2):153–169CrossRef
298.
go back to reference Packirisamy S (1996) Decaborane(14)-based polymers. Prog Polym Sci 21(4):707–773CrossRef Packirisamy S (1996) Decaborane(14)-based polymers. Prog Polym Sci 21(4):707–773CrossRef
299.
go back to reference Hu L, Li M, Xu C et al (2009) A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion. Surf Coat Technol 203(22):3338–3343CrossRef Hu L, Li M, Xu C et al (2009) A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion. Surf Coat Technol 203(22):3338–3343CrossRef
300.
go back to reference Hu L, Li M, Xu C et al (2011) Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack. Thin Solid Films 520:1063CrossRef Hu L, Li M, Xu C et al (2011) Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack. Thin Solid Films 520:1063CrossRef
301.
go back to reference Chang YC, Liu TZ, Zhang H et al (2014) Protection of kapton from atomic oxygen erosion using a polysilazane coating. Appl Mech Mater 651:65–68 Chang YC, Liu TZ, Zhang H et al (2014) Protection of kapton from atomic oxygen erosion using a polysilazane coating. Appl Mech Mater 651:65–68
302.
go back to reference Hanson W, Fernie J (1998) Ceramic joining – an overview. Mater World 6(9):524–536 Hanson W, Fernie J (1998) Ceramic joining – an overview. Mater World 6(9):524–536
303.
go back to reference Singh M (2011) Ceramic integration technologies for aerospace and energy systems: technical challenges and opportunities. NASA Technical Report No. 20110012028 Singh M (2011) Ceramic integration technologies for aerospace and energy systems: technical challenges and opportunities. NASA Technical Report No. 20110012028
304.
go back to reference Kim JJ, Park JW, Eagar TW (2003) Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints. Mater Sci Eng A 344(1–2):240–244CrossRef Kim JJ, Park JW, Eagar TW (2003) Interfacial microstructure of partial transient liquid phase bonded Si3N4-to-Inconel 718 joints. Mater Sci Eng A 344(1–2):240–244CrossRef
305.
go back to reference Morrissey SR (2005) New materials for aging space shuttle. Chem Eng News 83(44):26–29CrossRef Morrissey SR (2005) New materials for aging space shuttle. Chem Eng News 83(44):26–29CrossRef
306.
go back to reference Riedell JA, Easler TE (2009) Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component. US Patent 7,628,878 B2 Riedell JA, Easler TE (2009) Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component. US Patent 7,628,878 B2
307.
go back to reference Lyndon B (2013) Ceramic adhesive and methods for on-orbit repair of re-entry vehicles. NASA Technical Briefs, 20130013565, May 2013, p 15 Lyndon B (2013) Ceramic adhesive and methods for on-orbit repair of re-entry vehicles. NASA Technical Briefs, 20130013565, May 2013, p 15
308.
go back to reference Singh M (2007) In space repair and refurbishment of thermal protection systems structures of reusable launch vehicles. NASA Technical Report No. 20070031665 Singh M (2007) In space repair and refurbishment of thermal protection systems structures of reusable launch vehicles. NASA Technical Report No. 20070031665
309.
go back to reference Lewinsohn CA, Colombo P, Reimanis I et al (2001) Stresses occurring during joining of ceramics using preceramic polymers. J Am Ceram Soc 84(10):2240–2244CrossRef Lewinsohn CA, Colombo P, Reimanis I et al (2001) Stresses occurring during joining of ceramics using preceramic polymers. J Am Ceram Soc 84(10):2240–2244CrossRef
310.
go back to reference Colombo P, Donato A, Riccardi B et al (2002) Joining SiC-based ceramics and composites with pre-ceramic polymers. Ceram Trans 144:323–334 Colombo P, Donato A, Riccardi B et al (2002) Joining SiC-based ceramics and composites with pre-ceramic polymers. Ceram Trans 144:323–334
311.
go back to reference Bernardo E, Parcianello G, Colombo P et al (2012) SiAlON ceramics from preceramic polymers and nano-sized fillers: application in ceramic joining. J Eur Ceram Soc 32:1329–1335CrossRef Bernardo E, Parcianello G, Colombo P et al (2012) SiAlON ceramics from preceramic polymers and nano-sized fillers: application in ceramic joining. J Eur Ceram Soc 32:1329–1335CrossRef
312.
go back to reference Luan X, Chang S, Riedel R et al (2018) An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route. Ceram Int 44(7):8476–8483CrossRef Luan X, Chang S, Riedel R et al (2018) An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route. Ceram Int 44(7):8476–8483CrossRef
313.
go back to reference Luan X, Chang S, Yu R et al (2019) Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. Ceram Int 45(7):9515–9521CrossRef Luan X, Chang S, Yu R et al (2019) Effect of PSO and TiB2 content on the high temperature adhesion strength of SiBCNO ceramic. Ceram Int 45(7):9515–9521CrossRef
314.
go back to reference Wang X, Wang J, Wang H (2019) Preparation, structural evolution, and performance of heat-resistant organosilicon polymer adhesives for joining SiC ceramics. J Adhes 95:85–102CrossRef Wang X, Wang J, Wang H (2019) Preparation, structural evolution, and performance of heat-resistant organosilicon polymer adhesives for joining SiC ceramics. J Adhes 95:85–102CrossRef
315.
go back to reference Zhong Z, Xu H, Zhang X et al (2018) Bonding ZrB2-SiC-G ceramics using modified organic adhesive for engineering applications at ultra high temperatures in air. Ceram Int 44(4):3810–3815CrossRef Zhong Z, Xu H, Zhang X et al (2018) Bonding ZrB2-SiC-G ceramics using modified organic adhesive for engineering applications at ultra high temperatures in air. Ceram Int 44(4):3810–3815CrossRef
316.
go back to reference Wang X, Wang J, Wang H (2015) Joining of SiC ceramics via a novel liquid preceramic polymer (V-PMS). Ceram Int 41:7283–7288CrossRef Wang X, Wang J, Wang H (2015) Joining of SiC ceramics via a novel liquid preceramic polymer (V-PMS). Ceram Int 41:7283–7288CrossRef
317.
go back to reference Wang X, Shi J, Wang H (2019) Preparation, properties, and structural evolution of a novel polyborosilazane adhesive, temperature-resistant to 1600°C for joining SiC ceramics. J Alloys Compd 772:912–919CrossRef Wang X, Shi J, Wang H (2019) Preparation, properties, and structural evolution of a novel polyborosilazane adhesive, temperature-resistant to 1600°C for joining SiC ceramics. J Alloys Compd 772:912–919CrossRef
318.
go back to reference Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37(8):1633–1656CrossRef Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37(8):1633–1656CrossRef
319.
go back to reference Sreeja R, Prabhakaran PV, Manwatkar SK et al (2012) Adhesive joining of metal to metal and metal to ceramic by precursor route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram Sreeja R, Prabhakaran PV, Manwatkar SK et al (2012) Adhesive joining of metal to metal and metal to ceramic by precursor route. Paper presented in the international symposium on metals and materials, Thiruvananthapuram
320.
go back to reference Scheffler M, Colombo P (eds) (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, Weinheim Scheffler M, Colombo P (eds) (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, Weinheim
321.
go back to reference Colombo P, Bernardo E (2008) Cellular structures (Chapter 10). In: Riedel R, Chen I-W (eds) Ceramics science and technology. Structures, vol 1. Wiley-VCH, Weinheim, pp 407–441 Colombo P, Bernardo E (2008) Cellular structures (Chapter 10). In: Riedel R, Chen I-W (eds) Ceramics science and technology. Structures, vol 1. Wiley-VCH, Weinheim, pp 407–441
322.
go back to reference Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57(2):115–131CrossRef Ohji T, Fukushima M (2012) Macro-porous ceramics: processing and properties. Int Mater Rev 57(2):115–131CrossRef
323.
go back to reference André R, Studart W, Urs T (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789CrossRef André R, Studart W, Urs T (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789CrossRef
324.
go back to reference Arpin KA, Hill C, Justin W et al (2007) Ceramic foam processing by the chemical vapor infiltration of a graphite felt with SiC for ceramic composite applications. In: Tandon R (ed) Mechanical properties and performance of engineering ceramics and composites II. Wiley, Hoboken, pp 415–422 Arpin KA, Hill C, Justin W et al (2007) Ceramic foam processing by the chemical vapor infiltration of a graphite felt with SiC for ceramic composite applications. In: Tandon R (ed) Mechanical properties and performance of engineering ceramics and composites II. Wiley, Hoboken, pp 415–422
325.
go back to reference Borchardt L, Hoffmann C, Oschatz M et al (2012) Preparation and application of cellular and nanoporous carbides. Chem Soc Rev 41:5053–5067CrossRef Borchardt L, Hoffmann C, Oschatz M et al (2012) Preparation and application of cellular and nanoporous carbides. Chem Soc Rev 41:5053–5067CrossRef
326.
go back to reference Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer-derived ceramics. Mater Sci Eng 106:1–30CrossRef Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer-derived ceramics. Mater Sci Eng 106:1–30CrossRef
327.
go back to reference Colombo P, Bernardo E (2003) Macro- and micro-cellular porous ceramics from preceramic polymers. Compos Sci Technol 63:2353–2359CrossRef Colombo P, Bernardo E (2003) Macro- and micro-cellular porous ceramics from preceramic polymers. Compos Sci Technol 63:2353–2359CrossRef
328.
go back to reference Zhang H, D’Angelo Nunes P, Wilhelm M et al (2016) Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J Eur Ceram Soc 36:51–58CrossRef Zhang H, D’Angelo Nunes P, Wilhelm M et al (2016) Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. J Eur Ceram Soc 36:51–58CrossRef
329.
go back to reference Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans A Math Phys Eng Sci 364:109–124 Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans A Math Phys Eng Sci 364:109–124
330.
go back to reference Jana P, Zera E, Sorarù GD (2017) Processing of preceramic polymer to low density silicon carbide foam. Mater Des 116:278–286CrossRef Jana P, Zera E, Sorarù GD (2017) Processing of preceramic polymer to low density silicon carbide foam. Mater Des 116:278–286CrossRef
331.
go back to reference Mishra MK, Kumar S, Ranjan A et al (2018) Processing, properties and microstructure of SiC foam derived from epoxy-modified polycarbosilane. Ceram Int 44:1859–1867CrossRef Mishra MK, Kumar S, Ranjan A et al (2018) Processing, properties and microstructure of SiC foam derived from epoxy-modified polycarbosilane. Ceram Int 44:1859–1867CrossRef
332.
go back to reference Fukushima M, Colombo P (2012) Silicon carbide-based foams from direct blowing of polycarbosilane. J Eur Ceram Soc 32:503–510CrossRef Fukushima M, Colombo P (2012) Silicon carbide-based foams from direct blowing of polycarbosilane. J Eur Ceram Soc 32:503–510CrossRef
333.
go back to reference Strachota A, Černý M, Chlup Z et al (2015) Preparation of finely macroporous SiOC foams with high mechanical properties and with hierarchical porosity via pyrolysis of a siloxane/epoxide composite. Ceram Int 41:8402–8410CrossRef Strachota A, Černý M, Chlup Z et al (2015) Preparation of finely macroporous SiOC foams with high mechanical properties and with hierarchical porosity via pyrolysis of a siloxane/epoxide composite. Ceram Int 41:8402–8410CrossRef
334.
go back to reference Wolff F, Ceron NB, Fey T et al (2012) Extrusion foaming of a preceramic silicone resin with a variety of profiles and morphologies. Adv Eng Mater 14:1110–1115CrossRef Wolff F, Ceron NB, Fey T et al (2012) Extrusion foaming of a preceramic silicone resin with a variety of profiles and morphologies. Adv Eng Mater 14:1110–1115CrossRef
335.
go back to reference Chen H, Parthasarathy TA, Cinibulk MK et al (2014) Processing, characterization, and modeling of room-temperature-vulcanized silicone-derived ceramic foams. J Am Ceram Soc 97:733–741CrossRef Chen H, Parthasarathy TA, Cinibulk MK et al (2014) Processing, characterization, and modeling of room-temperature-vulcanized silicone-derived ceramic foams. J Am Ceram Soc 97:733–741CrossRef
336.
go back to reference Zeschky J, Höfner T, Arnold C et al (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef Zeschky J, Höfner T, Arnold C et al (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937CrossRef
337.
go back to reference Yuan X, Lü J, Yan X et al (2011) Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater 142:754–758CrossRef Yuan X, Lü J, Yan X et al (2011) Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater 142:754–758CrossRef
338.
go back to reference Eom J-H, Kim Y-W, Park CB et al (2012) Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics. J Ceram Soc Japan 120:199–203CrossRef Eom J-H, Kim Y-W, Park CB et al (2012) Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics. J Ceram Soc Japan 120:199–203CrossRef
339.
go back to reference Manoj KBV, Zhai W, Eom J-H et al (2011) Processing highly porous SiC ceramics using poly(ether-co-octene) and hollow microsphere templates. J Mater Sci 46:3664–3667CrossRef Manoj KBV, Zhai W, Eom J-H et al (2011) Processing highly porous SiC ceramics using poly(ether-co-octene) and hollow microsphere templates. J Mater Sci 46:3664–3667CrossRef
340.
go back to reference Reschke V, Laskowsky A, Kappa M (2011) Polymer derived ceramic foams with additional strut porosity. Mater Sci 3–4:57–61 Reschke V, Laskowsky A, Kappa M (2011) Polymer derived ceramic foams with additional strut porosity. Mater Sci 3–4:57–61
341.
go back to reference Wang J, Oschatz M, Biemelt T et al (2013) Preparation of cubic ordered mesoporous silicon carbide monoliths by pressure assisted preceramic polymer nanocasting. Microporous Mesoporous Mater 168:142–147CrossRef Wang J, Oschatz M, Biemelt T et al (2013) Preparation of cubic ordered mesoporous silicon carbide monoliths by pressure assisted preceramic polymer nanocasting. Microporous Mesoporous Mater 168:142–147CrossRef
342.
go back to reference Nangrejo MR, Bao X, Edirisinghe MJ (2000) The structure of ceramic foams produced using polymeric precursors. J Mater Sci Lett 19:787–789CrossRef Nangrejo MR, Bao X, Edirisinghe MJ (2000) The structure of ceramic foams produced using polymeric precursors. J Mater Sci Lett 19:787–789CrossRef
343.
go back to reference Sreejith KJ, Fey T, Greil P (2014) Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram Trans 243:47–60 Sreejith KJ, Fey T, Greil P (2014) Siliconboronoxycarbide (SiBOC) foam from methyl borosiloxane. Ceram Trans 243:47–60
344.
go back to reference Kim Y-W, Kim S-H, Song I-H et al (2005) Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction. J Am Ceram Soc 88(10):2949–2951CrossRef Kim Y-W, Kim S-H, Song I-H et al (2005) Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction. J Am Ceram Soc 88(10):2949–2951CrossRef
345.
go back to reference Naviroj M, Miller SM, Colombo P et al (2015) Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. J Eur Ceram Soc 35:2225–2232CrossRef Naviroj M, Miller SM, Colombo P et al (2015) Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. J Eur Ceram Soc 35:2225–2232CrossRef
346.
go back to reference Yoon B-H, Lee E-J, Kim H-E et al (2007) Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. J Am Ceram Soc 90:1753–1759CrossRef Yoon B-H, Lee E-J, Kim H-E et al (2007) Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. J Am Ceram Soc 90:1753–1759CrossRef
347.
go back to reference Zhang H, Lana C, Wilhelm M et al (2017) Macro/mesoporous SiOC ceramics of anisotropic structure for cryogenic engineering. Mater Des 134:207–217CrossRef Zhang H, Lana C, Wilhelm M et al (2017) Macro/mesoporous SiOC ceramics of anisotropic structure for cryogenic engineering. Mater Des 134:207–217CrossRef
348.
go back to reference Xue F, Zhou K, Wu N et al (2018) Porous SiC ceramics with dendritic pore structures by freeze casting from chemical cross-linked polycarbosilane. Ceram Int 44:6293–6299CrossRef Xue F, Zhou K, Wu N et al (2018) Porous SiC ceramics with dendritic pore structures by freeze casting from chemical cross-linked polycarbosilane. Ceram Int 44:6293–6299CrossRef
349.
go back to reference Assefa D, Zera E, Campostrini R et al (2016) Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceram Int 42:11805–11809CrossRef Assefa D, Zera E, Campostrini R et al (2016) Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceram Int 42:11805–11809CrossRef
350.
go back to reference Pradeep VS, Ayana DG, Graczyk-Zajac M et al (2015) High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim Acta 157:41–45CrossRef Pradeep VS, Ayana DG, Graczyk-Zajac M et al (2015) High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries. Electrochim Acta 157:41–45CrossRef
353.
go back to reference Williams JL, Lachman IM, Patil MD et al (1994) Cellular ceramic substrates. MRS Proc 368:283–292CrossRef Williams JL, Lachman IM, Patil MD et al (1994) Cellular ceramic substrates. MRS Proc 368:283–292CrossRef
354.
go back to reference Han JH, Hegedus AG, (1992) Method for producing a fiber-reinforced ceramic honeycomb panel. US Patent 5,078,818 Han JH, Hegedus AG, (1992) Method for producing a fiber-reinforced ceramic honeycomb panel. US Patent 5,078,818
355.
go back to reference Petrisko RA, Stark GL, Petrark DR et al (1998) US Patent 5,851,403 Petrisko RA, Stark GL, Petrark DR et al (1998) US Patent 5,851,403
356.
go back to reference Cagliostro DE, Riccitiello SR (1989) Ceramic honeycomb structures and method thereof. US Patent 4,824,711 Cagliostro DE, Riccitiello SR (1989) Ceramic honeycomb structures and method thereof. US Patent 4,824,711
357.
go back to reference Pearson WR, Daws DE (2000) Method of adhering ceramic foams. US Patent 6,099,671 Pearson WR, Daws DE (2000) Method of adhering ceramic foams. US Patent 6,099,671
358.
go back to reference Daryabeigi K, Miller SD, Cunnington GR (2007) NASA Langley Research Center Document ID: 2008001356 Daryabeigi K, Miller SD, Cunnington GR (2007) NASA Langley Research Center Document ID: 2008001356
359.
go back to reference Wang Y, Chen Z, Yu S et al (2017) Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Compos Part B 129:180–186CrossRef Wang Y, Chen Z, Yu S et al (2017) Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Compos Part B 129:180–186CrossRef
Metadata
Title
Polymer-Derived Ceramics and Their Space Applications
Authors
S. Packirisamy
K. J. Sreejith
Deepa Devapal
B. Swaminathan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_31

Premium Partners