Skip to main content
Top
Published in: Polymer Bulletin 6/2015

01-06-2015 | Original Paper

Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil

Authors: Seyedmehrdad Jalilian, Hamid Yeganeh

Published in: Polymer Bulletin | Issue 6/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of renewable resource-based polyurethane networks (NIPUs) with potential application as biodegradable scaffold were prepared through a nonisocyanate methodology. For this purpose, carbonated soybean oil (CSBO) was reacted with amine curing agents composed of 3-aminopropyl-terminated poly (ethylene glycol) (ATPEG) and ethylene diamine (ED) at different weight ratios. CSBO was synthesized from epoxidized soybean oil and carbon dioxide gas at atmospheric pressure using an efficient catalyst system. The chemical identity of NIPUs was confirmed by Fourier transform infrared spectroscopy. Dynamic mechanical analysis of the networks showed single-phase structure for those samples made from ED. Evaluation of tensile property showed widespread behavior from weak plastic up to elastomers with high elongation at break. Hydrolytic degradation profile of NIPUs was increased as ATPEG content increased. Investigation of the L-929 fibroblast cells morphology and evaluation of quantitative tetrazolium dye-based colorimetric assay (MTT assay) confirmed nontoxic behavior and good cytocompatibility of the prepared polyurethanes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Beauty D, Pronobesh C, Manabendra M, Brigitte V, Niranjan K (2013) Bio-based biodegradable and biocompatible hyperbranched polyurethane: a scaffold for tissue engineering. Macromol Biosci 13(1):126–139CrossRef Beauty D, Pronobesh C, Manabendra M, Brigitte V, Niranjan K (2013) Bio-based biodegradable and biocompatible hyperbranched polyurethane: a scaffold for tissue engineering. Macromol Biosci 13(1):126–139CrossRef
2.
go back to reference Zhang Q, Liu Y, Chen KC, Zhang G, Shi X, Chen H (2013) Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier. Colloid Surf B 102:354–360CrossRef Zhang Q, Liu Y, Chen KC, Zhang G, Shi X, Chen H (2013) Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier. Colloid Surf B 102:354–360CrossRef
3.
go back to reference Pavlova M, Draganova M (1993) Biocompatible and biodegradable polyurethane polymers. Biomaterials 14:1024–1029CrossRef Pavlova M, Draganova M (1993) Biocompatible and biodegradable polyurethane polymers. Biomaterials 14:1024–1029CrossRef
4.
go back to reference Yang Chin W, Cherng J, Shau M (2004) Synthesis of novel biodegradable cationic polymer: N, N-diethylethylenediamine polyurethane as a gene carrier. Biomacromolecules 5:1926–1932CrossRef Yang Chin W, Cherng J, Shau M (2004) Synthesis of novel biodegradable cationic polymer: N, N-diethylethylenediamine polyurethane as a gene carrier. Biomacromolecules 5:1926–1932CrossRef
5.
go back to reference Gogolewski S, Gorna K (2007) Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res 80:94–101CrossRef Gogolewski S, Gorna K (2007) Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res 80:94–101CrossRef
6.
go back to reference Fromstein JD, Woodhouse KA (2002) Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomat Sci Polym E 13(4):391–406CrossRef Fromstein JD, Woodhouse KA (2002) Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomat Sci Polym E 13(4):391–406CrossRef
7.
go back to reference Grada S, Kupcsika L, Gornab K, Gogolewskib S, Alini M (2003) The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 24:5163–5171CrossRef Grada S, Kupcsika L, Gornab K, Gogolewskib S, Alini M (2003) The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 24:5163–5171CrossRef
8.
go back to reference Zhang C, Zhang N, Wen X (2006) Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res 79:335–344CrossRef Zhang C, Zhang N, Wen X (2006) Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender. J Biomed Mater Res 79:335–344CrossRef
9.
go back to reference Kloss J, de Souza F, da Silva E, Dionísio J, Akcelrud L, Zawadzki S (2006) Polyurethanes elastomers based on poly (ε-caprolactone) diol: biodegradation evaluation. Macromol Symp 245:651–656CrossRef Kloss J, de Souza F, da Silva E, Dionísio J, Akcelrud L, Zawadzki S (2006) Polyurethanes elastomers based on poly (ε-caprolactone) diol: biodegradation evaluation. Macromol Symp 245:651–656CrossRef
10.
go back to reference Wang SH, Silva LF, Kloss J, Munaro M, Wada MA (2003) Polycaprolactone based biodegradable polyurethanes. Macromol Symp 197:255–264CrossRef Wang SH, Silva LF, Kloss J, Munaro M, Wada MA (2003) Polycaprolactone based biodegradable polyurethanes. Macromol Symp 197:255–264CrossRef
11.
go back to reference Yeganeh H, Lakouraj M, Jamshidi S (2005) Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers. J Polym Sci Chem 43:2985–2996CrossRef Yeganeh H, Lakouraj M, Jamshidi S (2005) Synthesis and characterization of novel biodegradable epoxy-modified polyurethane elastomers. J Polym Sci Chem 43:2985–2996CrossRef
12.
go back to reference Gorna K, Gogolewski S (2002) In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics with various hydrophilicities. Polym Degrad Stab 75:113–122CrossRef Gorna K, Gogolewski S (2002) In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics with various hydrophilicities. Polym Degrad Stab 75:113–122CrossRef
13.
go back to reference Lim DI, Park HS, Park JH, Knowles JC, Gong MS (2013) Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly(ε-caprolactone) diol. J Bioact Compat Pol 28(3):274–288CrossRef Lim DI, Park HS, Park JH, Knowles JC, Gong MS (2013) Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly(ε-caprolactone) diol. J Bioact Compat Pol 28(3):274–288CrossRef
14.
go back to reference Mei T, Zhu Y, Ma T, He T, Li L, Wei C (2014) Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. J Biomed Mater Res 102(9):3243–3254CrossRef Mei T, Zhu Y, Ma T, He T, Li L, Wei C (2014) Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. J Biomed Mater Res 102(9):3243–3254CrossRef
15.
go back to reference Oh JK (2011) Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7:5096–5108CrossRef Oh JK (2011) Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 7:5096–5108CrossRef
16.
go back to reference Han JJ, Huang HX (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Poly Sci 120:3217–3223CrossRef Han JJ, Huang HX (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Poly Sci 120:3217–3223CrossRef
17.
go back to reference Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef
18.
go back to reference Tu Y, Kiatsimkul P, Suppes G, Hsieh F (2007) Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J Appl Polym Sci 105:453–459CrossRef Tu Y, Kiatsimkul P, Suppes G, Hsieh F (2007) Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J Appl Polym Sci 105:453–459CrossRef
19.
go back to reference Hill K (2000) Fats and oils as oleochemical raw materials. Pure Appl Chem 72:1255–1264CrossRef Hill K (2000) Fats and oils as oleochemical raw materials. Pure Appl Chem 72:1255–1264CrossRef
20.
go back to reference Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:2717–2727CrossRef Petrović ZS, Yang L, Zlatanić A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:2717–2727CrossRef
21.
go back to reference Lligadas G, Ronda JC, Galia M (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835CrossRef Lligadas G, Ronda JC, Galia M (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835CrossRef
22.
go back to reference Radojčić D, Ionescu M, Zoran S, Petrović ZS (2013) Novel potentially biodegradable polyurethanes from bio-based polyols. Contemporary Materials 4:9–21 Radojčić D, Ionescu M, Zoran S, Petrović ZS (2013) Novel potentially biodegradable polyurethanes from bio-based polyols. Contemporary Materials 4:9–21
23.
go back to reference Desroches M, Benyahya S,Besse V,Auvergne R, Boutevin B, Caillol S (2014) Synthesis of bio-based building blocks from vegetable oils: a platform chemicals approach.Lipid Technol 26(2):35–38 Desroches M, Benyahya S,Besse V,Auvergne R, Boutevin B, Caillol S (2014) Synthesis of bio-based building blocks from vegetable oils: a platform chemicals approach.Lipid Technol 26(2):35–38
24.
go back to reference Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792CrossRef Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46:3771–3792CrossRef
25.
go back to reference Li X, Fang Z, Li X, Tang S, Zhang K, Guo K (2014) Synthesis and application of a novel bio-based polyol for preparation of polyurethane foams. New J Chem 38:3874–3878CrossRef Li X, Fang Z, Li X, Tang S, Zhang K, Guo K (2014) Synthesis and application of a novel bio-based polyol for preparation of polyurethane foams. New J Chem 38:3874–3878CrossRef
26.
go back to reference Desroches M, Escouvios M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79CrossRef Desroches M, Escouvios M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev 52:38–79CrossRef
27.
go back to reference Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114:1165–1174CrossRef Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci Technol 114:1165–1174CrossRef
28.
go back to reference Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704CrossRef Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704CrossRef
29.
go back to reference Dutta S, Karak N, Saikia JP, Konwar BK (2009) Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation. Bioresour Technol 100(24):6391–6397CrossRef Dutta S, Karak N, Saikia JP, Konwar BK (2009) Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation. Bioresour Technol 100(24):6391–6397CrossRef
30.
go back to reference Tseng S, Tang S, Shau M, Zeng Y, Cherng J, Shih M (2005) Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Bioconjug Chem 16:1375–1381CrossRef Tseng S, Tang S, Shau M, Zeng Y, Cherng J, Shih M (2005) Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane. Bioconjug Chem 16:1375–1381CrossRef
31.
go back to reference Yeganeh H, Hojati-Talemi P (2006) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol). Polym Degrad Stab 92:480–489CrossRef Yeganeh H, Hojati-Talemi P (2006) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly (ethylene glycol). Polym Degrad Stab 92:480–489CrossRef
32.
go back to reference Yeganeh H, Jamshidi H, Jamshidi S (2007) Synthesis and properties of novel biodegradable poly (ε-caprolactone)/poly (ethylene glycol)-based polyurethane elastomers. Polym Int 56:41–49 Yeganeh H, Jamshidi H, Jamshidi S (2007) Synthesis and properties of novel biodegradable poly (ε-caprolactone)/poly (ethylene glycol)-based polyurethane elastomers. Polym Int 56:41–49
33.
go back to reference Fromstein JD, Woodhouse KA (2002) Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomat Sci Polym E 13:391–406CrossRef Fromstein JD, Woodhouse KA (2002) Elastomeric biodegradable polyurethane blends for soft tissue applications. J Biomat Sci Polym E 13:391–406CrossRef
34.
go back to reference Chia S, Gorna K, Gogolewski S, Alini M (2006) Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 12:1945–1953CrossRef Chia S, Gorna K, Gogolewski S, Alini M (2006) Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 12:1945–1953CrossRef
35.
go back to reference Skarja GA, Woodhouse KA (1998) Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J Biomat Sci Polym E 9:271–295CrossRef Skarja GA, Woodhouse KA (1998) Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J Biomat Sci Polym E 9:271–295CrossRef
36.
go back to reference Skarja GA, Woodhouse KA (2000) Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 75:1522–1534CrossRef Skarja GA, Woodhouse KA (2000) Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 75:1522–1534CrossRef
37.
go back to reference Diakoumakos C, Kotzev D (2004) Non-isocyanate-based polyurethanes derived upon the reaction of amines with cyclocarbonate resins. Macromol Symp 216:37–46CrossRef Diakoumakos C, Kotzev D (2004) Non-isocyanate-based polyurethanes derived upon the reaction of amines with cyclocarbonate resins. Macromol Symp 216:37–46CrossRef
38.
go back to reference Figovsky O, Shapovalov L (2002) Features of reaction amino-cyclocarbonate for production of new type nonisocyanate polyurethane coatings. Macromol Symp 187:325–332CrossRef Figovsky O, Shapovalov L (2002) Features of reaction amino-cyclocarbonate for production of new type nonisocyanate polyurethane coatings. Macromol Symp 187:325–332CrossRef
39.
go back to reference Xiao L, Su D, Yue C, Wu W (2014) Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides. J CO2 Util 6:1–6 Xiao L, Su D, Yue C, Wu W (2014) Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides. J CO2 Util 6:1–6
40.
go back to reference Song B, Guo L, Zhang R, Zhao X, Gan H, Chen C, Chen J, Zhu W, Hou Z (2014) The polymeric quaternary ammonium salt supported on silica gel as catalyst for the efficient synthesis of cyclic carbonate. JCO2 Util 6:62–68 Song B, Guo L, Zhang R, Zhao X, Gan H, Chen C, Chen J, Zhu W, Hou Z (2014) The polymeric quaternary ammonium salt supported on silica gel as catalyst for the efficient synthesis of cyclic carbonate. JCO2 Util 6:62–68
41.
go back to reference Bahr M, Mulhaupt R (2012) Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem 14:483CrossRef Bahr M, Mulhaupt R (2012) Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green Chem 14:483CrossRef
42.
go back to reference Kim M, Kim H, Ha C, Park D, Lee J (2001) Syntheses and thermal properties of poly (hydroxy) urethanes by polyaddition reaction of bis (cyclic carbonate) and diamines. J Appl Polym Sci 81:2735–2743CrossRef Kim M, Kim H, Ha C, Park D, Lee J (2001) Syntheses and thermal properties of poly (hydroxy) urethanes by polyaddition reaction of bis (cyclic carbonate) and diamines. J Appl Polym Sci 81:2735–2743CrossRef
43.
go back to reference Kihara N, Endo T (1993) Synthesis and properties of poly (hydroxyurethane) s. J Polym Sci Chem 31:2765–2773 Kihara N, Endo T (1993) Synthesis and properties of poly (hydroxyurethane) s. J Polym Sci Chem 31:2765–2773
44.
go back to reference Kihara N, Kushida Y, Endo T (1996) Optically active poly (hydroxyurethane)s derived from cyclic carbonate and l-lysine derivatives. J Polym Sci Chem 34:2173–2179CrossRef Kihara N, Kushida Y, Endo T (1996) Optically active poly (hydroxyurethane)s derived from cyclic carbonate and l-lysine derivatives. J Polym Sci Chem 34:2173–2179CrossRef
45.
go back to reference Jalilian M, Yeganeh H, Nekoomanesh HM (2008) Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polym Int 57:1385–1394CrossRef Jalilian M, Yeganeh H, Nekoomanesh HM (2008) Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polym Int 57:1385–1394CrossRef
46.
go back to reference Ochiai B, Inoue S, Endo T (2005) One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. J Polym Sci Chem 43:6613–6618CrossRef Ochiai B, Inoue S, Endo T (2005) One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. J Polym Sci Chem 43:6613–6618CrossRef
Metadata
Title
Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil
Authors
Seyedmehrdad Jalilian
Hamid Yeganeh
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 6/2015
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1342-3

Other articles of this Issue 6/2015

Polymer Bulletin 6/2015 Go to the issue

Premium Partners